

#### Chest X-ray Taking Procedures Training for X-ray Technicians/ Radiographer

## "Conventional Imaging"

Ms. KHIN YADANAR MOE

Consultant (TB CXR Training), IDDS Project/ Myanmar

# Content



#### **Film Construction**

Types of Film Based on Their Application

Film Artifacts

Film Handling and Storage

Intensifying Screen

Factors Affecting Image Quality

Film Cassette

Film Processing

Limitations

## Film – Screen Radiography

 In film-screen radiography, a sheet of film with a light-sensitive emulsion on both sides is sandwiched between two intensifying screens

 In order to overcome the thicker screen, sandwiching the double-sided film between two screens serves to add the optical densities of the two emulsions together



## X-ray Film

- A media that makes a permanent record of the image
- To record the image on the film
- Images are stored as a latent image

## **Film Construction**

## **Film Construction**

#### I) Polyester plastic base:

- Support layer for fragile emulsion
- Must be clear, strong and consistent thickness (0.18 mm)
- Tinted pale blue or blue-gray (reduces eye strain)
- Coated on one or two sides with emulsion \*single emulsion film (better detail)
   \*double emulsion film (less detail)

#### 2) Adhesive Layer

- To provide uniform surface over which the emulsion can be coated uniformly
- 3) Substratum layer
  - To keep emulsion layer and base adhering to each other during the coating stage and processing

#### 4) Emulsion layer:

- Acts as photographic active layer
   \*activated by light and radiation to create image
- Consists of a mixture of gelatin solution and silver halide crystal \*typical emulsion consists of silver bromide (98%) and silver iodide (2%)
   \*crystal size - 1.0 to 1.5 µ in diameter



#### **Film Construction**

#### "Latent Image Formation"

- Exposure of silver iodo bromide grains to light photons emitted by the screen
- Affects of grain size and distribution:
  - The bigger the average grain size, the higher the speed of the film
  - The more grain distribution, the lower the contrast
  - The bigger the crystal, the higher the graininess (clumping of the crystal)
  - Latent image is made visible by chemical processing

#### "White and Dark Appearance on Film"

- **Dark** silver halide crystals exposed to photons \*after processing, it turns to black metallic silver
- White no crystals exposed
   \*silver halide is wash away by processing

#### 5) Supercoat

• To protect the layer of gelatin

• To reduce damage from scratches and pressure <u>Gelatin</u>

- Used as a suspending medium and binding agent for the silver halide particles
- Can be easily spread on the film base when warm
- Firmly exists on the base as a gel when cool
- Flexible and does not crack easily on bending

# Types of Film based on their Application

#### 1) Screen Films:

- Most commonly used
- Sensitive to blue light emitted by intensifying screens and direct actions of x-rays
- Used in cassettes with intensifying screens
- High speed

#### 2) Non-screen / Direct exposure films:

- Has thicker coat of emulsion used without an intensifying screen
- Depends mainly on action of x-ray
- Four times faster than that of screen films
- Must be manually processed because of thick emulsion
- Uses :
  - a) To detect intra-ocular foreign bodies
  - b) In dental with intra-oral cardboard

#### 3) Mammography film:

- Single coated
- Designed to be used with single intensifying screen
- Combination must be fast to deliver minimum dose to the glandular tissue

#### 4) Duplicating Film:

- Used to copy radiograph
- Original cassette to be copied is inserted into a cassette whose opaque front has been replaced by a pane of clear glass
- Special duplicating film is placed with emulsion side down onto the radiograph

**Differences between single coated and double coated x-ray film** 

| Characteristic  | Single side | Double coated |
|-----------------|-------------|---------------|
| Radiation dose  | Increased   | Decreased     |
| Detail          | Increased   | Decreased     |
| Parallex effect | No          | Yes           |
| Contrast        | Decreased   | Increased     |

## **Film Artifacts**

#### I. Technical artifacts (caused by X-rays tube)

| No | Artifacts      | Causes                                                                                 | Remedy                                                                                 |
|----|----------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1  | Over exposure  | <ul> <li>High exposure factors</li> <li>High exposure on fast speed screens</li> </ul> | <ul> <li>Use optimum<br/>factors</li> <li>Use film – screen<br/>combination</li> </ul> |
| 2  | Under exposure | <ul> <li>Low exposure factors</li> <li>Low exposure on slow speed screens</li> </ul>   | <ul> <li>Use optimum<br/>factors</li> <li>Use film – screen<br/>combination</li> </ul> |

#### I. Technical artifacts (caused by X-rays tube) – Cont.

| No | Artifacts        | Causes                            | Remedy                                                                                       |
|----|------------------|-----------------------------------|----------------------------------------------------------------------------------------------|
| 3  | Double exposure  | - Single film is exposed twice    | - Always separate<br>exposed and<br>unexposed cassettes                                      |
| 4  | Film fog / noise | - Use of damaged cracked cassette | <ul> <li>Carefully use the cassette</li> <li>Replace the damaged cassette on time</li> </ul> |

#### I. Technical artifacts (caused by X-rays tube) – Cont.

| No | Artifacts           | Causes                                                                                                                         | Remedy                                                                                                                                                          |
|----|---------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | Grid cut off effect | <ul> <li>Due to inaccurate position of patient on the table</li> <li>Grid is not completely inserted into the table</li> </ul> | <ul> <li>The patient's midsagittal plane should be aligned with the mid axis of the table</li> <li>Grid should be completely inserted into the table</li> </ul> |

# 2. Positioning artifacts (caused by position of patient, cassette and tube)

| No | Artifacts      | Causes                                                   | Remedy                                                                        |
|----|----------------|----------------------------------------------------------|-------------------------------------------------------------------------------|
| 1  | Image blurring | - Due to improper respiration                            | - Ask patient to practice<br>inspiration, expiration<br>and holding of breath |
| 2  | Marker effect  | - Due to the use of<br>wrong marker or side<br>placement | - Use accurate markers<br>and on the proper side                              |

# 2. Positioning artifacts (caused by position of patient, cassette and tube) – Cont.

| No | Artifacts               | Causes                                                    | Remedy                                                                                                                        |
|----|-------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 3  | Movement<br>unsharpness | - Due to patient<br>movement during<br>exposure           | <ul> <li>Explain the procedure<br/>to the patient</li> <li>Use immobilization<br/>devices</li> <li>Reduce exposure</li> </ul> |
| 4  | Metallic Artifact       | - Presence of metallic<br>object between tube and<br>film | - Ask the patient to<br>remove the radiopaque<br>objects                                                                      |

#### 3. Processing artifacts

| No | Artifacts | Causes                                                                                                          | Remedy                                                                                                                                   |
|----|-----------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Film fog  | <ul> <li>Damaged safe light</li> <li>Accidental exposure of<br/>white light or any<br/>general light</li> </ul> | <ul> <li>Check safe light<br/>periodically or within 15<br/>days</li> <li>Cassette should be closed</li> <li>Door interlocked</li> </ul> |
| 2  | Age fog   | - Use of expired<br>film                                                                                        | - Always use film before<br>the expiry date and check<br>the date regularly                                                              |

#### 3. Processing artifacts – Cont.

| No | Artifacts          | Causes                                                                      | Remedy                                                                                                |
|----|--------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|    | Age fog            | - Storing of film in<br>high temperature<br>and high humidity<br>conditions | <ul> <li>Air conditioner should be<br/>installed and check<br/>properly</li> </ul>                    |
| 3  | Cresenteric effect | - Due to image of<br>finger on film<br>during handling                      | - Always handle the film<br>carefully with the help of<br>two fingers during<br>loading and unloading |

#### 3. Processing artifacts – Cont.

| No | Artifacts                       | Causes                                                                                     | Remedy                                                                                  |
|----|---------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 4  | Stain effect (various colours 1 | may appear on film                                                                         | during processing                                                                       |
|    | Brown colour stain              | <ul> <li>Improper fixing</li> <li>Exhausted fixer</li> <li>Improper<br/>washing</li> </ul> | <ul> <li>Proper fixing</li> <li>Change fixer on time</li> <li>Proper washing</li> </ul> |

#### 3. Processing artifacts – Cont.

| Artifacts                         | Causes                                                                   | Remedy                                                                                                                 |
|-----------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Yellow colour<br>stain            | <ul> <li>Oxidized developer</li> <li>Use of old<br/>developer</li> </ul> | <ul> <li>Developer tank should be covered and preservative added</li> <li>Change developer solution on time</li> </ul> |
| Static elastic<br>effect (stripe) | - Due to friction<br>between two films                                   | - Film should be handled<br>properly and film box should be<br>placed vertically                                       |

## Film Handling & Storage

## Film Handling

- I. Do not flex
- 2. Hands must be clean
- 3. Film is sensitive to pressure, scratches, light, x-rays, heat, moisture, electricity and age

## Film Storage

- Proper film storage is required for high quality and long-lasting images
- 2. The location must be clean, dry and light tighten
- 3. 40-60% humidity and 69° F or 10 24 ° C temperature
- 4. Avoid storing near chemical fumes which can fog the film
- 5. Safe from radiation exposure

## Film Storage

- 6. Expiration date clearly visible
- 7. Should be stored on edge (like books in a library)
- Do not stack the film boxes horizontally because film in the bottom may show pressure artifacts
- 9. Always used older film first

# Intensifying Screen

## **Intensifying Screen**

- An image amplifier converting the aerial image which is relatively made of a few x-rays photons into many thousand times of light photons
- Converts incident x-ray photons to visible light which then exposes the silver halide emulsion on the film
- The image is formed by processing the latent image using dark room procedures

#### **Intensifying Screen Construction**

- Polyester plastic base support layer
- Phosphor layer active layer (X-rays photons converted to light photons) \*Photoelectric effect
- Reflective layer increases screen efficiency
- Protective coating
#### **Intensifying Screen Construction – Cont.**

Intensifying Screen Phosphor;

I. Rare Earth phosphor (emits green light) *Standard*most efficient and commonly used

2. Calcium Tungstate (emits blue light)not efficient

#### Intensifying Screen Construction – Cont.

#### I. Rare Earth Screen:

- Higher DQE (detective quantum efficiency)
   \*the percentage of x-rays absorbed by the screen
- Higher x-rays absorption abilities
- Higher CE (Conversion efficiency)
   \*the amount of light emitted for each x-rays absorbed
- More light emitted per x-rays absorbed by the screen

#### **Types of Intensifying Screen with different speed**

Screen High resolution Regular or Standard Medium Fast Fast

Reference: John Ball, Tony Price, Chesney's Radiographic

Speed

Slow

#### Types of Intensifying Screen with different speed

- Screen speed is defined as a relative number to demonstrate how efficiently x-rays are converted into useable light
  - Screen speed ranges from 100 (slow) to 1200 (fast)
  - Routine 200 to 800, high detail 50 to 100

Faster screen speed - reduces patient exposure Quantum mottle Image detail I Image noise (speckled background on the image)

#### Advantages and Disadvantages of Intensifying Screen

| Advantages                                                    | Disadvantages                               |
|---------------------------------------------------------------|---------------------------------------------|
| A screen can absorb 20 – 40 times more x-rays than film alone | Less detail than direct exposure            |
| Reduced exposure                                              | Formation of quantum mottle and unsharpness |
| Reduced patient dose                                          | Reduced detail                              |
| Increased x – ray tube life                                   | Maintenance of screen                       |

#### Advantages and Disadvantages of Intensifying Screen – Cont.

| Advantages                                                | Disadvantages   |
|-----------------------------------------------------------|-----------------|
| Contrast good                                             | Screen artifact |
| Prevent motional lack of sharpness                        | _               |
| Suitable for pediatric, geriatric<br>and large body parts |                 |
| Short developing time                                     | _               |

## Factors Affecting Image Quality

## Factors affecting image quality

- Rare Earth screen should be used to be a good image quality.
- The use of intensifying screens lowers spatial resolution (good differentiation between two nearby objects) compared with direct-exposure radiographs

## Factors affecting image quality – Cont.

- Spatial Resolution:
  - The higher the lp/mm the smaller the object that can be imaged
     Very fast screens 7 lp/mm
     Fine-detail screens 10 lp/mm
     Direct-exposure screens 50 lp/mm

Spatial resolution is expressed by the number of line pairs per millimeter (lp/mm)

## Factors affecting image quality – Cont.

- Noise reduces the image contrast \*caused by high kvp and fast screens used
- Artifacts (unwanted information in the image) reduces the image quality
  - Small scratches and dirty screen

Screens should be cleaned once each month with manufacturer's cleaner with antistatic compounds

## Film Cassette

## What is a Film Cassette?

"A film cassette is a container for exposed or unexposed film."

#### **Functions:**

- To hold intensifying screen and protect them from damage
- To exclude all light from entering the cassette and fogging the film
- To maintain a close and uniform contact between the film and screens
- To exclude dust and dirt from the sensitive screens

#### **Care of cassette**

- Do not scratch the surface
- Keep clean (use mild soap and water on a regular basis)
- Do not allow the screen to become wet
- Record the date of cleaning

#### **Care of cassette – Cont.**

- Hold it gently and store in a standing position
- Do not store cassette near sources of heat
- Do not leave the cassette open
- Ensure the screen is fully dry before reloading the cassette

#### **Cassette storage**

- Upright and away from radiation
- Do not stack
- Should always be loaded and ready to use
- Avoid humidity and dust

\*Number the cassettes so repeat problems can be easily identified





Cassette

Consultant's own training material

# Film Processing

## Manual Film Processing:

- Involves the processing of the film by chemicals with the help of a person
- Latent image is converted into visible image in this process

- This process contains (5) steps:
  - 1) Developing 4) Washing
  - 2) Rinsing 5) Drying
  - 3) Fixing

#### I. Developing

#### Developing

Is a chemical process in which the latent image is converted into a visible image

To convert metallic silver into black metallic silver by reduction process

- I. Developing Cont.
  - A developer solution contains:
    - i. Solvent
    - ii. Developing agent
    - iii. Activator
    - iv. Preservative
    - v. Restrainer

- I. Developing Cont.
- i. Solvent
  - Commonly used solvent is water
  - The solvent dissolves chemicals and also aids ionization
- ii. Developing agent
  - Hydroquinone, phenidone and metol
  - The purpose of developing agent is to convert exposed AgBr crystals to black metallic silver
  - Hydroquinone is responsible for high contrast
  - Metol responsible for grey shades

#### I. Developing – Cont.

- Hydroquinone is always used in combination with metol to shorten the developing time
- Works more efficiently when the solution temperature is less than 20 degree Celsius
- iii. Activator
  - Commonly used hydroxide, sodium carbonate and sodium metaborate
  - Used to open the pores of the film and allow the developing agent to do their work
  - Optimum pH is range from 10 to 11

- I. Developing Cont.
- iv. Preservative
  - Use sodium sulphate or potassium metabisulphite
  - Decrease the rate of oxidation of hydroquinone (developing agent)
  - Increases the life of the developer solution
- v. Restrainer
  - Use potassium bromide solution
  - It is also called the anti fogging agent

## 2. Rinsing

- When the x-ray film is removed from the developer, some chemicals remain on the film
- The film should be rinsed to remove these chemicals
- To stop the reaction of development of the developer and neutralization the basicity of the residual developer solution
- In a water bath, rinsing the film for 30 seconds

## 3. Fixing

- Is the process of removing the unexposed AgBr without damaging the image formed by metallic silver
- It also hardens the gelatin emulsion
- The optimum temperature is 18-24 degree Celsius
- Fixing time is one to four minutes

- The fixing solution contains:
  - i. Solvent
  - ii. Acidifier
  - iii. Clearing agents
  - iv. Hardening agent
  - v. Preservative

- i. Solvent
  - Water is normally used as solvent
  - Used to dissolve the chemicals
- ii. Acidifier
  - Commonly use sulphuric or acetic acid
  - Neutralize the basicity of the residual developer which remains on the film
  - It also provides the suitable medium for the fixer and hardener to act

#### iii. Clearing agents

- Commonly use sodium or ammonium thiosulphate salt
- Also acts as fixing agent

#### iv. Hardening agent

- Commonly used chemical is potassium Alum
- To hard the gelatin emulsion
- Decrease the physical injury of the film

- v. Preservative
  - Commonly use chemical sodium sulphite
  - Increase the life of the fixer solution
  - Protects the fixing agent from decomposition (damage)

#### 4. Washing

#### Washing:

- After fixing the film, the film must be washed with water
- Washing removes the residual processing solution and fixing chemicals
- If these chemical are not removed the image will discolor and fade
- Normally, x-ray film should be washed with distilled water or tap water
- Washing time is normally about 20 min at 20 degree Celsius

## Limitations

## Limitations in Conventional Radiography

- The radiographic speed is fixed and not possible to adjust patient dose
- Narrow exposure latitude (low visualization of soft tissue and bone)
- Fixed brightness and grey-scale that cannot be adjusted
- Many toxic chemicals are used

## Limitations in Conventional Radiography – Cont.

- High repeat exposure rate
- Imaging archiving is difficult
- Time intensive
- Increased radiation dose

# THANKYOU!