

Chest X-ray Taking Procedures Training for X-ray Technicians/ Radiographer

"Radiation Hazard"

Ms. KHIN YADANAR MOE

Consultant (TB CXR Training), IDDS Project/ Myanmar

Content

Radiobiological Effects

Stochastic Effect

Differences between Stochastic and Deterministic Effects

Measuring Radiation Dose

Radiation Hazard

"The harmful effect caused by the penetration of the radiation in the body is called radiation hazard."

Radiobiological Effects:

When radiation passes through the body, it produces moving electrons.

I. Direct Effect

2. Indirect Effect

I. Direct Effect

Photo reference: Author, mstroeck Access for free at (https://commons.wikimedia.org/wiki/File:DNA_Overview2.png)

August 2021

2. Indirect Effect

Classification of Radiobiological effects:

I. Stochastic effect (Late effect / Chronic effect)

- The effect that appears after a period (latent period)
- Occurs at low dose less than 0.5 Gy
- Has no threshold dose
- E.g., carcinogenesis, skin necrosis

I. Stochastic effect (Late effect / Chronic effect) – Cont.

Somatic Effect

- This effect appears in the life span of a particular individual
- Does not pass the next generation

Genetic Effect This effect alters the DNA sequence of the individual and results in mutations, which can be passed to the next generation.

Foetal Effect

 Depends on the gestation period of the pregnancy (40 weeks) <u>3 phases of foetal</u>
<u>effect</u>:
I) Pre-implantation period (1-9 days)
2) Period of major organogenesis (9-45 days)
3) Foetal period

(45-252 days)

Risk of stochastic effects

• Linked to the effective dose.

e.g. an abdominal x-ray - I mSv effective dose

 Children have a higher probability of radiation damage as they are developing and growing

2. Deterministic Effect

- Appears soon after the penetration of radiation.
- Has a minimum threshold dose
- Increases severity of disease when increased in absorbed dose in the affected individual
- Appears at high dose that is greater than 0.5 Gy

Deterministic effect thresholds

No	Exposed tissue	Net effect	Absorbed dose required for effect (Gy)	Time for effect to develop
1	Skin	Initial erythema	2	2-24 hours
		Erythema	3-6	1-4 weeks
		Hair-loss	3-4	2-3 weeks
2	Lens of eye	Cataract	3-5	Years
3	Bone marrow	Depression of blood formation	0.5	3-7 days

Deterministic effect thresholds

No	Exposed tissue	Net effect	Absorbed dose required for effect (Gy)	Time for effect to develop
4	Gonads	Temporary sterility in males	0.15	3-9 weeks
		Permanent sterility	3.5-6	3 weeks

Differences between Stochastic and Deterministic Effects

Stochastic effect	Deterministic effect
No threshold dose	Threshold dose
Mortality rate is less	Mortality or lethality rate is more
Latent period vary from few months to years ago e.g, cancer	Does not have latent period within days of the exposure e.g. erythema
Probability of disease increases with increase in absorbed dose	Severity of disease increases with increase in absorbed dose
Late effect	Early effect

Measuring radiation dose (Absorbed dose)

Name	Definition / formula	Pros and cons	Units
Absorbed	Energy deposited	Doesn't take into account	Gray (Gy)
dose	per unit mass of	effect for different types	(1 Gray =
	tissue	of radiation or sensitivity	1 joule/kg)
		of different organs	
		irradiated	

Measuring radiation dose (Equivalent dose)

Name	Definition / formula	Pros and cons	Units
Equivalent	Absorbed dose to	Takes into account	Sievert (Sv)
dose	tissue x radiation	effectiveness of	
	weighting factor	different radiation types	
		in producing biological	
		damage	

Measuring radiation dose (Effective dose)

Name	Definition / formula	Pros and cons	Units
Effective dose	Sum of (equivalent dose x tissue weighting factor)	Sensitivity of different tissues to radiation taken into account	Sievert (Sv) *Chest - 0.14 mSv

THANKYOU!