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Tuberculosis detection from chest x-rays for triaging in a
high tuberculosis-burden setting: an evaluation of
five artificial intelligence algorithms

Zhi Zhen Qin, Shahriar Ahmed, Mohammad Shahnewaz Sarker, Kishor Paul, Ahammad Shafiq Sikder Adel, Tasneem Naheyan, Rachael Barrett,
Sayera Banu*, Jacob Creswell*

Summary

Background Artificial intelligence (Al) algorithms can be trained to recognise tuberculosis-related abnormalities
on chest radiographs. Various Al algorithms are available commercially, yet there is little impartial evidence on
how their performance compares with each other and with radiologists. We aimed to evaluate five commercial
Al algorithms for triaging tuberculosis using a large dataset that had not previously been used to train any
Al algorithms.

Methods Individuals aged 15 years or older presenting or referred to three tuberculosis screening centres in Dhaka,
Bangladesh, between May 15, 2014, and Oct 4, 2016, were recruited consecutively. Every participant was verbally
screened for symptoms and received a digital posterior-anterior chest x-ray and an Xpert MTB/RIF (Xpert) test. All
chest x-rays were read independently by a group of three registered radiologists and five commercial Al algorithms:
CADA4TB (version 7), InferRead DR (version 2), Lunit INSIGHT CXR (version 4.9.0), JF CXR-1 (version 2), and qXR
(version 3). We compared the performance of the AI algorithms with each other, with the radiologists, and with the
WHO’s Target Product Profile (TPP) of triage tests (=90% sensitivity and =70% specificity). We used a new
evaluation framework that simultaneously evaluates sensitivity, proportion of Xpert tests avoided, and number
needed to test to inform implementers’ choice of software and selection of threshold abnormality scores.

Findings Chest x-rays from 23954 individuals were included in the analysis. All five Al algorithms significantly
outperformed the radiologists. The areas under the receiver operating characteristic curve were 90-81% (95% CI
90-33-91-29) for gXR, 90-34% (89-81-90-87) for CAD4TB, 88-61% (88-03-89-20) for Lunit INSIGHT CXR, 84-90%
(84-27-85-54) for InferRead DR, and 84-89% (84-26-85-53) for JF CXR-1. Only qXR (74-3% specificity [95% CI
73-3-74-9]) and CAD4TB (72-9% specificity [72-3-73-5]) met the TPP at 90% sensitivity. All five Al algorithms
reduced the number of Xpert tests required by 50% while maintaining a sensitivity above 90%. All AI algorithms
performed worse among older age groups (>60 years) and people with a history of tuberculosis.

Interpretation Al algorithms can be highly accurate and useful triage tools for tuberculosis detection in high-burden
regions, and outperform human readers.
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Introduction high burden of tuberculosis. Bangladesh is one such

The use of artificial intelligence (Al) technology for
medical diagnostics has accelerated rapidly in the past
decade and Al-powered deep learning neural networks
are increasingly being used to analyse medical images,
such as chest radiographs or x-rays."”

Chest x-ray is recommended by WHO as a screening
and triage tool for tuberculosis,’ a disease which killed
almost as many people worldwide in 2020 as COVID-19.*
A triage test is used among people with tuberculosis
symptoms or key risk factors for tuberculosis.’ The
performance of chest x-ray as a screening and triage tool
has been limited by high inter-reader and intra-reader
variability and moderate specificity,’ as well as limited
radiologist availability, especially in countries with a
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country, with tuberculosis prevalence estimated at
260 cases per 100000 population and with greater
prevalence in urban areas.®

Al technologies provide an opportunity to vastly increase
image reading capacity in a variety of contexts. Such
technology makes use of neural networks and deep
learning to identify tuberculosis-related abnormalities
from chest x-rays.” Inspired by the human nervous system,
neural networks are interconnected functions, each
comprised of a weight and a bias coefficient.” Through
back-propagation, the networks learn by adjusting the
weights and biases of the underlying functions on the
basis of the difference between predictions and ground
truth in a training dataset’ Deep neural networks are
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Research in context

Evidence before this study

We searched PubMed on Nov 25, 2020, using the search term
(“Tuberculosis” [MeSH] OR “tuberculosis” [tiab]) AND (“artificial
intelligence” [tiab] OR “CAD4TB" [tiab] OR “computer-aided
interpretation” [tiab] OR “computer aided detection” [tiab] OR
“deep learning” [tiab] OR “convolutional neural networks”
[tiab] OR “machine learning” [tiab] OR “automatic” [tiab] OR
“computer-aided reading” [tiab] OR “automated” [tiab] OR
“chest radiographs” [tiab]). Of the 1927 results, only studies
evaluating the performance of commercially available

artificial intelligence algorithms reading chest x-rays for
tuberculosis against an Xpert MTB/RIF reference standard were
considered. Development studies, literature reviews, and
evaluations against other reference standards (radiological,
smear, or culture) were excluded as their findings are not
comparable to this study. Five studies were identified that met
these criteria, all of which used area under the receiver
operating characteristic curve to evaluate the accuracy of
CAD4TB, with one publication also including Lunit INSIGHT
and gXR. Risk of bias was also high, as three of these studies had
authors with commercial interest in the software. Accuracy was
generally high across studies, but studies were mixed on how
performance compared with human readers.

structured in a number of layers, which increases the
capacity of the machine to perform complex processes,
such as parsing medical images.*

Several commercial AI algorithms have emerged in
recent years promising to identify tuberculosis-related
abnormalities from digital chest x-ray images.’ Al
algorithms produce a continuous abnormality score
(from 0 to 100 or from 0 to 1) that represents the likelihood
of the presence of tuberculosis-associated abnormalities.”
Although some software comes with preset threshold
abnormality scores, all algorithms also allow users to
customise the threshold score at any level to dichotomise
the output into binary classifications (either suggesting
confirmatory testing for tuberculosis or not).”

In March, 2021, WHO updated their tuberculosis
screening guidelines to recommend computer-aided
detection software in place of human readers for analysis
of digital chest x-ray for tuberculosis screening and
triage in individuals older than 15 years.” WHO did
not recommend specific products, leaving many con-
siderations before a decision whether to implement an Al
algorithm—and if so, which algorithm—can be made.
Most available publications on Al algorithms feature
earlier versions of one algorithm and were done with the
involvement of the developers. Published evidence from
impartial authors is therefore scarce.”™ There is also a
lack of sizeable external datasets to directly compare
algorithms.”” Furthermore, national tuberculosis pro-
grammes and health professionals need performance
measurements beyond accuracy, which is commonly

Added value of this study

Where quality impartial research on this topic is scarce, this study
offers an unbiased evaluation using a large dataset, evaluating
InferRead DR, JF CXR-1, and the most recent versions of CADATB
and Lunit INSIGHT for the first time. We also show that area
under the precision-recall curve is a better indication of product
accuracy in datasets with low disease prevalence than the metrics
used in previous publications. We used a new analytical
framework assessing implementation-relevant parameters,
such as cost-effectiveness, to highlight differences in product
performance not observable when solely reporting accuracy.

Implications of all the available evidence

This study shows that computer-aided detection can
outperform humans when reading chest x-rays for
tuberculosis in a triage setting in a country with high burden
of tuberculosis. This finding carries substantial implications for
international policy and practice regarding the use of these
tools to triage for tuberculosis. The new methods of
evaluation suggested in this study should be considered in
future studies, as evaluation frameworks more attuned to the
needs of implementers could yield literature more relevant to
implementers.

reported as area under the receiver operating char-
acteristic (ROC)* curve (AUROC; appendix 3 p 2)," as
well as guidance on operating point selection for different
patient sources. To help implementers assess accuracy,
we evaluated five Al algorithms for triaging tuberculosis
using a large dataset that had not previously been used to
train any commercial Al algorithms. We also present a
new analytical framework for selecting AT software and
threshold abnormality scores in different settings.

Methods

Study setting and population

This evaluation of commercially available AT algorithms
to read chest x-ray for tuberculosis followed the Standards
for Reporting of Diagnostic Accuracy Initiative on design
and conduct of diagnostic accuracy evaluations.” In this
retrospective study, we included all individuals aged
15 years or older who presented or were referred to three
tuberculosis screening centres in Dhaka, Bangladesh,
between May 15, 2014, and Oct 4, 2016 (appendix 3 p 3).%
Younger individuals were not included in the analysis as
some of the Al algorithms assessed are only approved for
use in individuals aged 15 years or older (appendix 3
PP 4-0).

All enrolled participants provided informed written
consent (appendix 3 p 3). The study protocol was reviewed
and approved by the Research Review Committee and the
Ethical Review Committee at the International Centre
for Diarrheal Disease Research, Bangladesh (protocol
PR-13003).
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Reading and testing process

Each participant was verbally screened by health-care
workers for tuberculosis symptoms (appendix 3 p 3)
using a standardised digital questionnaire and received a
digital posterior-anterior chest x-ray from a stationary
Delft Easy DR X-ray System (see appendix 3 p 7 for
machine specification and radiologist reading details).
Asymptomatic people who were referred with suspected
tuberculosis by their physicians also received a chest
x-ray. Three radiologists, registered with the Bangladesh
Medical and Dental Council, who had 10 years, 6 years,
and 1 year of experience, respectively (each doing a
minimum of 10000 chest x-ray reads a year), worked part
time for this project and took turns in reading chest
x-rays. The radiologists read 15-20 chest x-rays per day
and were blinded to any information except age and sex,
which were present in the metadata of the chest x-ray
DICOM files. They graded each chest x-ray as normal or
abnormal according to the tuberculosis prevalence
survey handbook,” and further classified abnormal chest
x-rays into three categories to be analysed separately:
highly suggestive of tuberculosis, possibly tuberculosis,
and abnormal but not tuberculosis.

The following Al companies agreed to participate in
this independent study: CADATB (version 7) by Delft
Imaging Systems (Netherlands), InferRead DR (version 2)
by Infervision (China), Lunit INSIGHT CXR for Chest
Radiography (version 4.9.0) by Lunit (South Korea),
JE CXR-1 (version 2) by JF Healthcare (China), and qXR
(version 3) by Qure.ai (India).” Detailed overviews of each
AT algorithm can be found in appendix 3 (pp 4-6).

Each centre was equipped with three four-module
GeneXpert systems and all individuals were asked to
submit a fresh spot sputum sample for testing with the
Xpert MTB/RIF (Xpert) assay. An average of 12 Xpert
tests were done daily at each centre. Xpert was repeated
if the initial test failed (invalid, error, or no result). The
final Xpert results were used as the bacteriological
evidence and reference standard. All data collected were
entered in a customised OpenMRS database and all
chest x-ray images were anonymised using a pydicom
module® in Python (script; appendix 3 pp 8-13).

The five Al algorithms scored the anonymised images
retrospectively, independently, and blinded to all infor-
mation, including age and sex. Three anonymised chest
x-ray images were checked by the AI developers for
image quality. No previous validation was done at the
study site. We used the CADATB cloud version and
installed the other four AI algorithms on the Stop TB
Partnership server to analyse the anonymised chest x-ray
files.

The Al developers of the five algorithms included in
this study had no role in the study design, data collection,
analysis plan, or writing of the study. The developers only
had access to the chest x-ray images and did not receive
any information on the patients’ demographic, symptom,
medical, or testing data.
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Data analysis
We first compared the grouped performance of the group
of three radiologists with the five AI algorithms to detect
tuberculosis-suggestive abnormalities in individuals
testing positive for Mycobacterium tuberculosis by Xpert.
By dichotomising the categories used by the radiologists,
we created three binary human reading classifications
(A—C) varying the radiologist categories that were
considered to be abnormal chest x-rays (appendix 3 p 14).
To compare with the continuous output from AI, we
calculated the sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) of the
radiologists’ three binary classifications and the threshold
abnormality score each AI algorithm needed to match
the sensitivity value for each one.”® We then compared
the difference in specificity, PPV, and NPV between
human readings and those of the five Al algorithms
using the McNemar test for paired proportions. We also
compared each algorithm against WHO's Target Product
Profile (TPP) for a triage tool of at least 90% sensitivity
and at least 70% specificity by altering the threshold
abnormality score to match each target value in turn and
recording the performance.®

AUROCs were compared for each of the five algorithms
using R’s pROC package, using DeLong methods, for
dependent AUROCs.* Since ROC plots can mislead on
the reliability of algorithm performance owing to an
intuitive but incorrect interpretation of the specificity in

24079 individuals enrolled across three tuberculosis centres
17149 referred by private health-care providers
3000 self-presented
2512 through public DOTS retesting*
485 referred by public health-care providers
173 through contact screening
171 through community screening
589 source not recorded

125 excludedt
16 without a valid chest x-ray or with
an unclear chest x-ray
109 <15 years of age
15 with invalid or error Xpert
24 insufficient specimen for testing

A 4

| 23954 included in the analysis |

v v

3675 with positive Xpert test 20279 with negative Xpert test
1441 graded as highly suggestive of 2242 graded as highly suggestive of
tuberculosis tuberculosis
1813 graded as abnormal (possibly 5341 graded as abnormal (possibly
tuberculosis) tuberculosis)
240 graded as abnormal (not tuberculosis) 3385 graded as abnormal (not tuberculosis)
181 with normal chest x-ray 9311 with normal chest x-ray

Figure 1: Study flow diagram

DOTS=directly observed treatment short course. Xpert=Xpert MTB/RIF. *DOTS centres are specialised facilities for
the diagnosis and treatment of patients with tuberculosis. DOTS retesting refers to individuals referred to the study

centres from a DOTS centre after a negative smear. tindividuals could be excluded for more than one reason.
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Overall (n=23954) Xpert results Tuberculosis history
Positive (n=3675) Negative (n=20279)  pvalue Previously treated (n=3586) New case (n=20341) p value
Age, years 420 (30-0-57-0) 37-0(27-0-53-0) 43-0(31-0-58-0) <0-0001 44-0 (31-0-58-0) 42-0 (30-0-57-0) <0-0001
Age group <0-0001 <0-0001
Young (15 to <25 years) 2666 (11-1%) 664 (18:1%) 2002 (9-9%) 309 (8-6%) 2355 (11-6%)
Middle aged (25 to <60 years) 16 056 (67-0%) 2378 (64-7%) 13678 (67-4%) 2437 (68-0%) 13606 (66:9%)
Older (=60 years) 5232 (21-8%) 633 (17-2%) 4599 (22:7%) 840 (23-4%) 4380 (21:5%)
Sex <0-0001 0541
Female 7876 (32-9%) 1061 (28-9%) 6815 (33-6%) 1163 (32-4%) 6706 (33-0%)
Male 16078 (67-1%) 2614 (71-1%) 13464 (66-4%) 2423 (67-6%) 13635 (67-0%)
Previous tuberculosis medication 3586 (15-0%) 608 (16-5%) 2978 (14-7%) 0-0041 3586 (100-0%) 0
Symptoms
Cough 21494 (89-7%) 3416 (93-0%) 18078 (89-1%) <0-0001 3176 (88-6%) 18318 (90-1%) 0-0090
Fever 19041 (79-5%) 3200 (87-1%) 15841 (78-1%) <0:0001 2931 (817%) 16110 (79-2%) 0-0006
Shortness of breath 13011 (54-3%) 2062 (56-1%) 10949 (54-0%) 0-022 1888 (52-6%) 11123 (54-7%) 0-024
Weight loss 15035 (62-8%) 2774 (755%) 12261 (60-5%) <0.0001 2475 (69-0%) 12560 (61.7%) <0.0001
Haemoptysis 3103 (13-0%) 471 (12-8%) 2632 (13-0%) 0-807 511 (14-2%) 2592 (12.7%) 0.014
Any symptoms 23582 (98-4%) 3644 (99-2%) 19938 (98-3%) 00002 3499 (97-6%) 20056 (98-6%) <0-0001
Patient source <0-0001 <0-0001
Community screening 170 (0-7%) 16 (0-4%) 154 (0-8%) 20 (0-6%) 150 (0-7%)
Contact screening 172 (0-7%) 9 (0-3%) 163 (0-8%) 11(0-3%) 161 (0-8%)
Private referral 17056 (71-2%) 2822 (787%) 14234 (70-2%) 2515 (70-1%) 14521 (71-4%)
Public DOTS retesting 2496 (10-7%) 436 (12-2%) 2060 (10-2%) 597 (16-6%) 1897 (9-3%)
Public referral 485 (2:1%) 100 (2-8%) 385 (1.9%) 47 (13%) 438 (2-2%)
Walk-in 2992 (12-8%) 204 (57%) 2788 (13.7%) 294 (8:2%) 2694 (13-2%)
Bacteriologically positive (Xpert) 3675 (15-3%) 3675 (100-0%) 0 608 (17-0%) 3063 (15-1%)
Mycobacterium tuberculosis burden 0-0004
Very low 634/3675 (17-3%) 634 (17-3%) 127/608 (20-9%) 507/3063 (16-6%)
Low 1093/3675 (29-7%) 1093 (29-7%) 192/608 (31-6%) 903/3063 (29-5%)
Medium 1299/3675(353%) 1299 (35:3%) 187/608 (30-8%) 1111/3063 (36:3%)
High 648/3675 (17-6%) 648 (17-6%) 103/608 (16-9%) 546/3063 (17-8%)
Rifampicin resistance <0-0001
Detected 181/3675 (4-9%) 181(4-9%) 87/608 (14-3%) 94/3063 (3-1%)
Not detected 3475/3675(94-6%)  3475(94-7%) 520/608 (85-5%) 2951/3063 (96-3%)
Indeterminate 14/3675 (0-4%) 14 (0-4%) 1/608 (0-2%) 13/3063 (0-4%)
Radiologist grading <0.0001 <0-0001
Abnormal: highly suggestive 3683 (15-4%) 1441(39-2%) 2242 (11-1%) 969 (27-0%) 2712 (13-3%)
Abnormal: possibly tuberculosis 7154 (29-9%) 1813 (49-3%) 5341 (26-3%) 1467 (40-9%) 5679 (27-9%)
Abnormal: not tuberculosis 3625 (15-1%) 240 (6-5%) 3385 (167%) 396 (11-0%) 3224 (15-8%)
Normal 9492 (39-6%) 181 (4-9%) 9311 (45-9%) 754 (21-0%) 8726 (42-9%)
Al abnormality scores
CAD4TB* 017 0-97 0-09 <0-0001 0-61 012 <0-0001
(0-02-0-80) (0-88-0-99) (0-02-0-55) (0-17-0-91) (0-02-0-74)
qXR 024 0-89 011 <0-0001 0-68 015 <0-0001
(0-03-0-78) (0-82-0-93) (0-02-0-61) (0-25-0-85) (0-03-0-75)
Lunit INSIGHT CXR 0-29 0-95 0-10 <0-0001 0-81 0-15 <0-0001
(0-02-0-86) (0-88-0-97) (0-02-0.76) (0-31-0-91) (0-02-0-84)
JFCXR-1 0-85 1.00 0-58 <0-0001 1-00 0-70 <0-0001
(0-08-1-00) (1-00-1-00) (0-05-0-99) (0-88-1-00) (0-06-1-00)
InferRead DR 028 0-75 0-22 <0-0001 0-60 0-24 <0-0001
(0-14-0-65) (0-59-0-83) (0-13-0-54) (0-31-0-75) (013-0-61)
Data are n (%), n/N (%), or median (IQR), unless specified otherwise. Breakdown by radiologist grading is given in table 2. Al=artificial intelligence. DOTS=directly observed treatment short course. Xpert=Xpert
MTB/RIF. *CAD4TB threshold abnormality scores have been standardised to aid comparison.
Table 1: Characteristics of the 23 954 individuals included in this study, by Xpert results and tuberculosis history
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imbalanced datasets (ie, with low disease prevalence),”
we also calculated the area under the precision-recall
curve (PRC) for each algorithm (see appendix 3 p 15
for ROC and PRC methodology). Both ROC curves
and PRCs were generated for each algorithm over a
continuous range of threshold abnormality values.

We also assessed the distribution of abnormality
scores disaggregated by Xpert results and patient history
of tuberculosis. Finally, since the same threshold
abnormality scores might provide different results in
different populations, we evaluated the performance of
the Al algorithms disaggregated by age, history of

Overall (n=23 954) Radiologist grading
Abnormal: highly Abnormal: possibly  Abnormal: not Normal pvalue
suggestive of tuberculosis tuberculosis (n=9492)
tuberculosis (n=7154) (n=3625)
(n=3683)
Age, years 420 (30-0-57-0) 45.0 (31-0-60-0) 470 (32:0-620)  540(39-0-650)  350(280-480) <0-0001
Age group <0-0001

Young (15 to <25 years) 2666 (11-1%) 377 (10:2%) 708 (9-9%) 182 (5-0%) 1399 (14-7%)

Middle aged (25 to 16056 (67-0%) 2363 (64-2%) 4488 (62-7%) 2048 (56-5%) 7157 (75-4%)

<60 years)

Older (=60 years) 5232 (21-8%) 943 (25-6%) 1958 (27-4%) 1395 (38-5%) 936 (9-9%)

Sex <0-0001

Female 7876 (32:9%) 1057 (28:7%) 2196 (30-7%) 1337 (36-9%) 3286 (34-6%)

Male 16 078 (67-1%) 2626 (71-3%) 4958 (69:3%) 2288 (63-1%) 6206 (65-4%)

Previous tuberculosis 3586 (15-0%) 969 (26:3%) 1467 (20-5%) 396 (10-9%) 754 (7-9%) <0-0001
medication
Symptoms

Cough 21494 (89-7%) 3376 (917%) 6443 (90-1%) 3331(91-9%) 8344 (87-9%) <0-0001

Fever 19041 (79-5%) 3198 (86-8%) 5951 (83-2%) 2825 (77-9%) 7067 (74-5%) <0-0001

Shortness of breath 13011 (54-3%) 2287 (62-1%) 4064 (56-8%) 1953 (53-9%) 4707 (49-6%) <0-0001

Weight loss 15035 (62-8%) 2871 (78-0%) 4964 (69-4%) 2201 (60-7%) 4999 (52.7%) <0-0001

Haemoptysis 3103 (13-0%) 597 (16-2%) 892 (12.5%) 452 (12-5%) 1162 (122%) <0-0001

Any symptoms 23582 (98-4%) 3652 (99-2%) 7039 (98-4%) 3581 (98-8%) 9310 (98-1%) <0-0001
Patient source <0-0001

Community screening 170 (0-7%) 28 (0-8%) 30 (0-4%) 15 (0-4%) 97 (1-0%)

Contact screening 172 (0-7%) 12 (0-3%) 31(0-4%) 20 (0-6%) 109 (11% )

Private referral 17056 (712 %) 2796 (75-9%) 5565 (78-8%) 2647 (73-0%) 6048 (63-7%)

Public DOTS retesting 2496 (10-7%) 510 (13-8%) 685 (9-6%) 282 (7-8%) 1019 (10:7%)

Public referral 485 (21%) 39 (11%) 212 (3-0%) 94 (2-6%) 140 (1-5%)

Walk-in 2992 (12-8%) 207 (5-6%) 492 (6-9%) 409 (11:3%) 1884 (19-8%)
Bacteriologically positive 3675 (153%) 1441 (39-1%) 1813 (25-3%) 240 (6-6%) 181 (1-9%) <0-0001
(Xpert)

Mycobacterium tuberculosis <0-0001
burden

Very low 634/3675 (17-3%) 192/1441 (13-3%) 304/1813 (16-8%) 60/240 (25-0%) 79/181 (43-6%)

Low 1093/3675 (29-7%) 391/1441 (27-1%) 570/1813 (31-4%)  82/240 (342%) 52/181 (28:7%)

Medium 1299/3675(353%)  547/1441(38:0%)  643/1813 (35-4%)  69/240 (28-8%) 41/181 (22:7%)

High 648/3675 (17-6%) 312/1441 (21:7%) 301/1813 (16-6%)  28/240 (11-7%) 9/181 (5%)

Rifampicin resistance = = = = - <0-0001

Detected 181/3675 (4-9%) 91/1441 (6-3%) 79/1813 (4-4%) 8/240 (33%) 3/181 (17%)

Not detected 3475/3675(94-6%)  1347/1441(93-5%)  1724/1813(951%)  230/240(95-8%) 174/181 (96-1%)

Indeterminate 14/3675 (0-4%) 1/1441 (0-1%) 8/1813 (0-4%) 2/240 (0-8%) 3/181 (1-7%)

Radiologist grading

Abnormal: highly suggestive 3683 (15-4%)

Abnormal: possibly 7154 (29-9%)

tuberculosis

Abnormal: not tuberculosis 3625 (15-1%)

Normal 9492 (39-6%)

(Table 2 continues on next page)
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Overall (n=23954) Radiologist grading
Abnormal: highly Abnormal: possibly ~ Abnormal: not Normal (n=9492)  pvalue
suggestive of tuberculosis tuberculosis
tuberculosis (n=3683) (n=7154) (n=3625)
(Continued from previous page)
Al abnormality scores
CAD4TB* 017 091 072 011 0-02 <0-0001
(0-02-0-80) (0-65-0-98) (0-34-0-95) (0-03-0-45) (0-01-0-06)
qXR 0-24 085 072 0-16 0-03 <0-0001
(0-03-0-78) (0-74-0-91) (0-41-0-86) (0-04-0-51) (0-02-0-07)
Lunit INSIGHT CXR 0-29 091 0-82 0-19 0-02 <0-0001
(0-02-0-86) (0-83-0-96) (0-51-0-93) (0-03-0-64) (0-01-0-05)
JFCXR-1 0-85 1.00 1-00 0-72 0-06 <0-0001
(0-08-1-00) (1-00-1-00) (0-96-1-00) (0-21-098) (0-02-0-32)
InferRead DR 0-28 072 0-59 0-23 013 <0-0001
(0-14-0-65) (0-59-0-81) (0-35-0-75) (015-0-43) (0-10-0-20)
Dataare n (%), n/N (%), or median (IQR), unless specified otherwise. Al=artificial intelligence. DOTS=directly observed treatment short course. Xpert=Xpert MTB/RIF.
*CAD4TB threshold abnormality scores have been standardised to aid comparison.
Table 2: Characteristics of the 23 954 individuals included in this study, by radiologist grading

tuberculosis, sex, and patient sources using the AUROC
and area under the PRC (PRAUC).

Evaluation framework

We used an evaluation framework that analyses
performance beyond the AUROC alone, which is the
standard approach of Al evaluations, to inform threshold
selection by factoring in cost-effectivness (ie, reducing
test expenditure) and the ability to triage. Algorithms
were evaluated in a hypothetical triage process whereby
the Al score output would be used to triage all individuals
in the study population for follow-on Xpert diagnosis
based on a predefined threshold abnormality score. We
calculated the proportion of subsequent Xpert assays
saved (with 0% representing the Xpert testing-for-all
scenario) as a proxy for a product’s cost-effectiveness.
Likewise, the number of people needed to test (NNT) to
find one bacteriologically positive individual was used
as a proxy for a product’s ability to triage. We plotted
the sensitivity against the proportion of Xpert tests
avoided to show the trade-off between finding as many
bacteriologically positive patients as possible and the cost
savings of each Al algorithm. We produced visualisations
of sensitivity, proportion of Xpert tests avoided, and
NNT over a continuous range of threshold abnormality
scores in an evaluation framework to facilitate our
understanding of threshold selection.

Role of the funding source

The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.

Results
Between May 15, 2014, and Oct 4, 2016, 24079 individuals
visited the three study centres and were enrolled in this

study. 109 were younger than 15 years of age. Xpert tests
needed to be repeated in 830 participants: 15 tests
remained invalid or showed an error after the second
Xpert and 24 samples did not have enough specimen for
the second Xpert. 16 individuals did not have a valid or
clear xray. After excluding these 55 individuals,
23954 (98-1%) individuals were included in the analysis
(figure 1). The median age of participants was 42-0 years
(30-0-57-0), a third were female, and almost all reported
at least one tuberculosis-related symptom (tables 1, 2).
Reported symptoms included cough (89-7%), fever
(79-5%), shortness of breath (54- 3%), weight loss (62 -8%),
and haemoptysis (13-0%). 3586 (15-0%) participants had
previously received treatment for tuberculosis. More than
three quarters of participants were referred by public or
private health-care providers (tables 1, 2). The prevalence
of bacteriologically positive tuberculosis confirmed by
Xpert was 15-3% overall (n=3675), and 181 (4-9%) of
these cases were resistant to rifampicin. Rifampicin
resistance was observed in 87 (14-3%) of 608 Xpert-
positive patients with a history of tuberculosis and
94 (3-1%) of 3063 without a history of tuberculosis. The
radiologists graded 3683 (15-4%) radiographs as being
highly suggestive of tuberculosis, 7154 (29-9%) as
possibly tuberculosis, 3625 (15-1%) as abnormal but not
tuberculosis, and 9492 (39-6%) as normal (table 2).
When the sensitivity of the AI algorithms was matched
to that of the radiologists, all AI algorithms had
significantly better specificity across the three binary
classifications compared to the radiologists (table 3).
Classification A (with only chest x-rays highly suggestive
of tuberculosis being classified as radiologically positive)
had a sensitivity of 38.9% (95% CI 37-3-40-5) and
the highest specificity of the three classifications,
at 88.9% (88-5-89-4); the Al algorithms’ improvement
in specificity at the same sensitivity level ranged from
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Threshold Sensitivity®  Specificity PPV NPV Absolute difference between Al and
abnormality radiologists reading ™t
score®
Specificity PPV NPV
Binary classification A
Radiologists 38.9% 88.9% 39-1% 89.0%
(373t0405) (885t089-4) (375t0407)  (88:5t089-4)
Al algorithm
CAD4TB# 0-98 97-8% 762% 89-8% 8:9% 371% 0-8%
(97-6t098-0) (74-2t0781)  (89-4t090-2)  (8-4t09-4) (36:2t038:0) (02to1-4)
InferRead DR 079 94-2% 54-9% 89-4% 52% 15-7% 0-4%
(93-8t094-5) (529t0568) (89-0t089-8) (47t058)  (148t0167) (-02t01.0)
JFCXR-1 100 93-5% 542% 89:9% 4-6% 151% 1-0%
(931t1093-8) (5241056:0) (89-5t090-3) (40t051)  (141t016:0) (0-4t01-6)
Lunit INSIGHTCXR ~ 0-96 98-0% 755% 89-1% 9-0% 363% (35-4to  0-2%
(97-8t0981)  (733t0775) (887t089:5)  (8:5t095) 37-2) (-0-5t0 0-8)
qxR 091 97-9% 759% 89:5% 8-9% 36-8% 0-5%
(67-7t0981) (73-8t0778)  (891t089-9) (85t094)  (359t0377) (-01toll)
Binary classification B
Radiologists 88:5% 62:5% 30-0% 96-8%
(87-4t089:5) (61-8to63-1) (29-2t030-9) (96-5t097-1)
Al algorithm
CADATB# 0-57 75-8% 40-0% 97:3% 13-4% 10-0% 0-51%
(752t076-4) (39-0to411)  (97-0t0975) (125t0143) (91t010-9)  (0-2t00-8)
InferRead DR 0-37 64-5% 312% 96-8% 2-0% 12% 0-1%
(638t0651) (303t0321) (96-5t0971) (11to30)  (03to21) (-0-3t0 0-4)
JFCXR-1 095 64-1% 31-0% 96-8% 1-6% 1-0% 0-0%
(63-4t0647) (301t0319)  (96:5t097-1)  (0-7t02:6) (0-1t01.9) (-0-3t0 0-4)
Lunit INSIGHTCXR ~ 0-66 70:3% 35-3% 971% 7-9% 53% 0-3%
(697t0710)  (34310363) (96-8t0974) (70t08-8) (441062) (0010 0:6)
qxR 0-64 767% 40-9% 97-4% 14-2% 10-8% 0-6%
(76-1t0772)  (39-8to419) (971t0976) (133t0o151) (9:9t011-8) (0210 09)
Binary classification C
Radiologists 95-0% 45-7% 24-2% 98:1%
(943t0957) (450t046-4) (23-5t024-9) (97-81098-4)
Al algorithm
CAD4TB# 018 58-5% 29:5% 98-5% 12:8% 53% 0-4%
(57-8t059-1) (28-7t0303) (982t0987) (119t013-8) (4-5t06-2) (0-1t0 0-6)
InferRead DR 0-20 47-5% 25:0% 98:1% 1-8% 0-8% 0-1%
(46-8t0482) (242t0257) (979t0984) (0-8t02:8)  (0-0tol7) (-0-2t0 0-3)
JFCXR-1 053 49-0% 25.5% 98-2% 3-3% 1-3% 01%
(483t0497) (24-8t0262) (979t0985) (23t043) (0-5t02:2) (-0-2t0 0-4)
Lunit INSIGHTCXR ~ 0-07 47-8% 25-6% 98-2% 2-2% (1-2 1-4% 0-1%
(471t0485) (24-8t026-3)  (97-9t0985) to3-1) (0-5t02:2) (-0-2t0 0-4)
gXR 035 63-5% 322% 98:6% 17-9% 8-0% 0-5%
(62-9t064-2) (313t0331)  (98-4t098-8) (16-9t018-8) (72t089) (0:2t0 0-7)
Data in parentheses are 95% Cls. Binary classifications used can be found in appendix 3 (p 14). Al=artificial intelligence. NPV=negative predictive value. PPV=positive
predictive value. *Threshold abnormality scores were chosen to match the sensitivity across all Al algorithms to that obtained by the three radiologists. tData are percentage
point differences. A positive difference means that the specificity, PPV, or NPV of the Al algorithm is higher than that of the radiologists, when matching sensitivity.
A negative difference means that the specificity, PPV, or NPV of the Al algorithm is lower than that of the radiologists, when matching sensitivity. For example, the difference
in specificity=the specificity of an Al algorithm —the specificity of the corresponding radiological binary classification. +CAD4TB threshold abnormality scores have been
standardised to aid comparison.
Table 3: Comparison of sensitivity and specificity between radiologists’ reading and the predictions of the Al algorithms by human binary classifications

Lunit INSIGHT CXR’s 9-0 percentage points (95% CI
8-5-9-5) to JF CXR-1I's 4-6 percentage points (4-0-5-1).
Additionally, all AT algorithms significantly improved on
the human readers’ PPV, except for InferRead DR
when compared with radiological classification C (with
only normal chest x-ray being classified as radiologically
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negative; table 3). However, for all three radiological
binary classifications, the difference in NPVs between
most Al algorithms and human readers were not
significant (table 3).

At 90% sensitivity, algorithm specificities were
highest for gXR and lowest for JE CXR-1 (table 4).

e549



Articles

Threshold Sensitivity Specificity

score (95%Cl) (95% Cl)
Sensitivity fixed at 90%
CAD4TB* 0-50 90-0% (89-0-91-0)  72-9% (72-3-73-5)
InferRead DR 034 90-3% (89-3-91-3)  621% (61-4-62.7)
JFCXR-1 092 90-4% (89-4-913)  61-1% (60-4-61-8)

Lunit INSIGHT ~ 0-60
CXR

qXR 0-60
Specificity fixed at 70%
CAD4TB* 0-44
InferRead DR 0-47
JFCXR-1 0-98

Lunit INSIGHT ~ 0-67
CXR

QxR 0-51

90-1% (89-0-91.0)

90-2% (89-2-91-1)

91.5% (90-5-92-4)
84-0% (82-8-85-2)
85.0% (83-8-86-2)
88.8% (87.7-89-8)

92-6% (91-7-93-4)

67-2% (66-6-67-9)
74-3% (73:3-74-9)
70-0% (69-4-70-6)
70-6% (69-9-71-2)

68-8% (68-2-69-5)1
70-1% (69-4-70-7)

70-3% (69-6-70-9)

At 70% specificity, algorithm sensitivities were highest
for gXR and lowest for InferRead DR. Only gXR and
CAD4TB met the TPP of at least 90% sensitivity and at
least 70% specificity, with Lunit INSIGHT CXR coming
close (table 4).

The trade-offs between sensitivity and specificity of the
five AT algorithms can be visualised in the ROC curves
and PRCs (figure 2). The AUROCs were 90-81% (95% CI
90-33-91.29) for gXR, 90-34% (89-81-90-87) for
CADATB, 88-61% (88-03-89-20) for Lunit INSIGHT
CXR, 84-90% (84-27-85-54) for InferRead DR, and
84.89% (84-26-85-53) for JF CXR-1. The AUROCs of
CADATB and qXR were significantly greater than the
others (p values <2-2x10716; appendix 3 p 15). However,
no significant difference in the AUROCs was observed
between JF CXR-1 and InferRead (p=0.97; appendix 3

p 15). Above the 90% sensitivity mark, the ROC curves
across Al algorithms did not differ significantly. By
contrast, the PRCs and corresponding PRAUC scores
(CAD4TB: 66-95%; qXR: 66-46%; Lunit INSIGHT
CXR: 62-20%; JF CXR-1: 50-86%; and InferRead
DR: 49-56%) show a clear difference between the
five algorithms, with certain Al algorithms having lower
precision values for some given recall (ie, sensitivity)

Al=artificial intelligence. *CADATB threshold abnermality scores have been
standardised to aid comparison. tMarks the closest available match to a specificity
value of 70%.

Table 4: Comparison of Al algorithms against WHO's Target Product
Profile when matching either sensitivity or specificity
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Figure 2: Performance metrics between Al algorithms

Measures of performance include the ROC curves (A), precision-recall curves (B), and trade-off between sensitivity and proportion of subsequent Xpert tests
avoided (C) for the five Al algorithms, as well as sensitivity (D), proportion of subsequent Xpert tests avoided (E), and NNT (F) over a continuous range of threshold
abnormality scores. Performance is based on data from 23 954 individuals. Al=artificial intelligence. NNT=number needed to test. PPV=positive predictive value.
ROC=receiver operating characteristic. Xpert=Xpert MTB/RIF.
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Figure 3: AUROC and PRAUC by subgroups
Measures are disaggregated by age (young [15 to <25 years], middle aged [25 to <60 years], and older [260 years]); patient source; tuberculosis history; and sex. Al=artificial intelligence. AUROC=area
under the receiver operating characteristic curve. DOTS=directly observed treatment short course. PRAUC=area under the precision-recall curve.
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values (figure 2). Example report outputs from Al
algorithms are provided in appendix 3 (pp 16-20).

All five Al algorithms were found to reduce the number
of Xpert tests required by 50% while maintaining a
sensitivity above 90% (figure 2C). However, as more
diagnostic tests are avoided (especially >60%), significant
differences in sensitivity become apparent between
some of the algorithms. When Xpert testing is reduced
by two thirds, the sensitivity across all algorithms ranged
from 80% to 88%.

Although the ROC curves and PRCs showed similar
performance between InferRead DR and JF CXR-1,
the evaluation framework showing the dynamics of
sensitivity, proportion of Xpert tests avoided, and NNT
with varying threshold abnormality scores revealed
significant differences (figure 2D-F). For most of the
decision thresholds (above approximately 0-15), JF CXR-1
had higher sensitivity, but avoided fewer Xpert tests and
required a higher NNT than did InferRead DR. For
instance, at a cutoff threshold of 0-8, JF CXR-1 has a
sensitivity of 93-0% (95% CI 92-1-93-8), avoids 48-7%
of Xpert tests, and has an NNT of 3-6 (3-5-3-7). At the
same threshold, InferRead DR has a sensitivity of 35-4%
(33-9-37.0), avoids 90-5% of Xpert tests, and has an
NNT of 1.8 (1.7-1-8).

The performance of a single Al algorithm across the
evaluation framework can be used to inform threshold
selection. For most threshold abnormality scores
(ie, excluding very low or high scores), the sensitivity of
JE CXR-1 remained above 90%, the percentage of
Xpert tests avoided was between 25% and 60%, and the
NNT was between five and three (figure 2). The sensitivity
of CADA4TB, Lunit INSIGHT CXR, and gXR remained
higher than approximately 80% for most of the threshold
scores (<0-8), before quickly decreasing (figure 2). The
threshold selection clearly depends on the algorithm in
question and the context in which it is being used. For
example, the threshold required to achieve at least
90% sensitivity must be below 0-34 for InferRead DR,
below 0-50 for CAD4TB, below 0-60 for gXR and Lunit
INSIGHT CXR, and below 0-93 for JF CXR-1 (figure 2D).

The distributions of the abnormality scores of the
five Al algorithms disaggregated by Xpert outcomes
and history of tuberculosis vary considerably, possibly
indicating different underlying neural networks and the
effect that changing the threshold abnormality score can
have for different algorithms (appendix 3 p 21). Density
plots for Lunit INSIGHT CXR, CAD4TB, qXR’s, and
InferRead DR showed a good dichotomisation pattern
(between Dbacteriologically positive and negative).
Although almost all bacteriologically positive participants
received high abnormality scores (0-95-1-00) from
JE CXR-1, so did many Dbacteriologically negative
individuals. No abnormality score distributions for
bacteriologically negative participants with a history of
tuberculosis (the dark red bars) are left skewed for any Al
algorithm (appendix 3 p 21).

All five Al algorithms showed significant variation in
performance with respect to age, performing worse in the
older age group (>60 years) than in both the young group
(p values ranging from 1-8x 10716 [gXR] to 9-6x 108 [Lunit
INSIGHT CXR]) and middle-aged group (p values ranging
from 6-7x10713 [gXR] to 6-7x1078 [Lunit INSIGHT CXR];
figure 3; appendix 3 pp 22-23). InferRead DR, CAD4TB,
JF CXR-1, and qXR also performed significantly worse in
the middle-aged group compared with the younger group,
although no significance was observed for Lunit INSIGHT
CXR. All five Al algorithms performed significantly worse
among people with a history of tuberculosis (p values
from 1-6x10730 [InferRead DR] to 1-1x10712 [CAD4TB];
figure 3; appendix 3 p 22). No significant differences
were observed between the sexes, except JF CXR-1 and
Lunit INSIGHT CXR, which performed better in males
than females (p=0-0045 [JF CXR-1] and p=0-020 [Lunit
INSIGHT CXR; figure 3; appendix 3 p 22).

Al performance also varied with patient source. All
algorithms performed significantly better among walk-
ins than referrals from public and private facilities, and
directly observed treatment short course (DOTS)
retesting (p values ranging from 7.5x1025 [vs private
referral, with JE CXR-1] to 0.017 [vs public referral, with
CADA4TB]), except Lunit INSIGHT CXR which showed
no difference with public sector referral (figure 3;
appendix 3 p 23). ¢XR (p=0-0002), JE CXR-1(p=3-0x106),
and InferRead DR (p=0-0039) performed better among
individuals from DOTS retesting than private referrals,
and InferRead DR also performed significantly worse
among individuals from community screening than
walk-ins (p=0-0065; figure 3; appendix 3 pp 23-24).
Performance among individuals from contact screening
did not significantly differ from any of the other patient
sources across all Al algorithms (appendix 3 pp 23-24).

Discussion
This is the largest independent study evaluating multiple
Al algorithms as triage tests for tuberculosis with chest
x-ray, and the first published evaluation of JF CXR-1,
InferRead DR, and the latest version of CADA4TB (version 7)
for detecting tuberculosis-suggested abnormalities. Our
study shows that the predictions made by the five
algorithms significantly outperformed experienced human
readers in detecting tuberculosis-related abnormalities.”
The AUROC: indicate that all AT algorithms performed
well, with gXR and CAD4TB being the two top performers.
CADA4TB, Lunit INSIGHT CXR, and gXR’s AUROCs in
this study are slightly lower than those in previous
independent evaluations.” Our subanalysis showed that
the performance of computer-aided detection varied with
demographic and clinical factors, as well as patient
source, and therefore implied that variation exists in
Al performance across different contexts and geographies.
In our study population, rates of bacteriological positivity
and rifampicin resistance are both higher than the
national average because of the high proportion of
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referrals and urban population in this study*® Such
findings caution the generalisation to other populations,
particularly when selecting threshold abnormality scores
for different populations. The different training strategies
and datasets used (appendix 3 pp 4-6) could explain these
differences in performance by affecting the ability of
AT algorithms to generalise learning to different popula-
tions. Furthermore, we found that the difference in
performance between algorithms is better visualised in a
PRC plot than in ROC curves, so this approach should be
used in future analyses with imbalanced datasets to
inform software selection.

It is important that implementers can make informed
decisions when selecting the threshold abnormality
score specific to their settings. To enable this, we
used a new evaluation framework with important
implementation-relevant indications, such as number
of confirmation tests avoided and NNT, to infer the
cost-effectiveness and the ability to triage. We observed
that automated reading of chest x-ray by all
five AT algorithms can keep sensitivity above 90% and
at least halve the number of follow-on diagnostic tests
required. For large case-finding programmes that
might have insufficient on-site Xpert testing capacity
for all individuals examined, there is a trade-off between
the number of cases identified and the proportion of
Xpert tests that can be avoided—for example, choosing
to avoid using 70-80% of Xpert tests by allowing
sensitivity to reduce to 70% could miss 30% of
tuberculosis cases. Our evaluation framework also
indicates the difference in algorithms that might have
very similar performance if assessed using ROC curves
and PRC alone.

The importance of using a more nuanced analytical
framework to evaluate performance can be illustrated
by imagining different case-finding situations. For a
programme focused on capturing almost all people with
tuberculosis (eg, =95%), 46% of people triaged by gXR
would be recalled for confirmatory tests, followed by 49%
by CADATB, 57% by JF CXR-1, 58% by Lunit INSIGHT
CXR, and 59% by InferRead DR. If, instead, we imagine
a large active case-finding programme using chest x-ray
but with a much smaller budget and the need to reduce
the numbers of follow-on Xpert tests by 75% while
accepting compromised sensitivity, the strongest
candidates would be gXR (sensitivity 80-6%, 95% CI
79.2-81-8) and CADA4TB (79.7%, 78-3-81.0), followed
by Lunit INSIGHT CXR (76-6%, 75-1-77-9), InferRead
DR (69-3%, 67-7-70-8), and JF CXR-1 (8-5%, 66-6-69-7).
We recommend that this evaluation framework be
included in future AI evaluations instead of only
reporting on AUROCS.

Our density plots show that the underlying neural
networks of the five Al algorithms might be constructed
very differently and that no universal threshold abnor-
mality score can be applicable to all algorithms. Moreover,
the density plots of bacteriologically negative individuals
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with a history of tuberculosis indicates the algorithms’
poor ability to differentiate between old scarring and
active lesions could lead to excessive recall in this group.
We hypothesise that the abnormalities on the chest due to
age and previous tuberculosis influenced the classification
of active tuberculosis. The overall performance of the
five AT algorithms differed between age groups, patient
sources, and history of tuberculosis, although the
algorithms performed similarly for both sexes.
Interestingly, accuracy (ie, AUROC) was lowest among
those who presented themselves and were recruited
through community-based case finding. This implies that
the threshold abnormality scores probably need to be
different depending on the population tested and
with subpopulations. We further recommend that
manufacturers include basic demographic and clinical
data when training the AT algorithms to further improve
their algorithms in future software iterations.

Our results document the performance of five
algorithms at one point in time. New algorithms will
probably emerge in the near future and updated software
versions are launched almost annually.” Two algorithms
in this evaluation had not been previously evaluated
in peer-reviewed journals. Unlike traditional diagnostic
tests, which take years to produce and update, the
performance of Al improves incredibly fast. Future
guidance from bodies such as WHO must prepare for
this speed of change and independent evaluation libraries
are required to help implementers to understand the
performance of the latest offerings in the field.

Our study has several limitations. Due to logistic and
budgetary constraints, we did not use culture as the
reference standard, meaning that some people with
Xpert-negative, culture-positive tuberculosis might have
incorrectly been labelled as not having tuberculosis. We
also did not have access to Xpert Ultra, which is more
sensitive than Xpert, in Bangladesh during the study.
Due to the small number of asymptomatic individuals
(1-6% of the evaluation population), we did not stratify by
symptoms and analyse by symptom subgroup. We did
notdo any HIV testing because Bangladesh has a low HIV
prevalence.* However, algorithm performance among
different subpopulations—especially those living with
HIV, who often present with atypical radiological
images—needs to be better documented.” Similarly, we
excluded children from our study population, even
though some (but not all) of the algorithms included are
licensed for use in younger age groups (appendix 3
pp 4-6). These decisions limit the generalisability of our
findings. In particular, further evaluation of computer-
aided detection in children is necessary. Another
limitation is that each chest x-ray was read by a single
radiologist, rather than a panel of radiologists. However,
the intended use of these Al algorithms is in resource-
constrained settings with few or no radiologists and
neither resources nor time permitted multiple readings
of high numbers of images. Furthermore, human readers
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were blinded to clinical and demographic information
except for age and sex, although in the field, reading of
chest x-rays could be informed by this data. Additionally,
the analysis included only three human readers as a
comparison point. We caution against extrapolating the
study findings to rural areas as our study was done in
metropolitan Dhaka, where experienced readers are
often more available. Indeed, computer-aided detection
software might perform even better compared with radio-
logists in rural and poorly resourced areas. Additionally,
only one brand of x-ray machine was used in this study
due to procurement constraints. Lastly, we did not
conduct this study prospectively and did not collect
implementation data such as programmatic costs, setup,
services, Or user experience.

In conclusion, our results show that all five
Al algorithms outperformed experienced certified
radiologists and could avoid follow-on Xpert testing and
reduce the NNT while maintaining high sensitivity.
ROC curves and PRCs are powerful tools for evaluation;
however, additional metrics and analysis, including our
new evaluation framework of sensitivity, confirmation
tests saved, and NNT with varying threshold abnormality
scores, will help implementers with threshold and
software selection.
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