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Using artificial intelligence to read 
chest radiographs for tuberculosis 
detection: A multi-site evaluation 
of the diagnostic accuracy of three 
deep learning systems
Zhi Zhen Qin  1, Melissa S. Sander2, Bishwa Rai3, Collins N. Titahong2, Santat Sudrungrot3, 
Sylvain N. Laah2,4, Lal Mani Adhikari3, E. Jane Carter5, Lekha Puri1, Andrew J. Codlin1 & 
Jacob Creswell  1*

Deep learning (DL) neural networks have only recently been employed to interpret chest radiography 
(CXR) to screen and triage people for pulmonary tuberculosis (TB). No published studies have compared 
multiple DL systems and populations. We conducted a retrospective evaluation of three DL systems 
(CAD4TB, Lunit INSIGHT, and qXR) for detecting TB-associated abnormalities in chest radiographs from 
outpatients in Nepal and Cameroon. All 1196 individuals received a Xpert MTB/RIF assay and a CXR read 
by two groups of radiologists and the DL systems. Xpert was used as the reference standard. The area 
under the curve of the three systems was similar: Lunit (0.94, 95% CI: 0.93–0.96), qXR (0.94, 95% CI: 
0.92–0.97) and CAD4TB (0.92, 95% CI: 0.90–0.95). When matching the sensitivity of the radiologists, the 
specificities of the DL systems were significantly higher except for one. Using DL systems to read CXRs 
could reduce the number of Xpert MTB/RIF tests needed by 66% while maintaining sensitivity at 95% 
or better. Using a universal cutoff score resulted different performance in each site, highlighting the 
need to select scores based on the population screened. These DL systems should be considered by TB 
programs where human resources are constrained, and automated technology is available.

It is almost impossible to talk about the future of medicine without stumbling upon two letters that bring many 
hopes, fears, and confusions to the topic. Artificial intelligence (AI) is not new but has gained traction in health-
care in the last decade, due in part to advances in deep learning neural networks. Neural networks are a set of 
algorithms organized in nodes and layers that mimic human cognitive functions, designed to automatically infer 
rules to recognize patterns1,2. Neural networks help us cluster and classify images, sound, text and time series after 
being trained on labeled datasets1. Deep-learning networks are distinguished from earlier versions of neural net-
works by having more than one hidden layer1, so that each layer learns a distinct set of characters and aggregates 
and combines inputs from the previous layers to understand and perform more complex features and functions, 
such as reading medical images and autonomous driving1,3.

Deep neural networks provide opportunities for new solutions to tackle tuberculosis (TB), which kills more 
people world-wide than any single infectious disease4. A major reason for this high mortality is the persistent gap 
in detection; more than one third of the estimated 10 million incident TB cases are not diagnosed and reported4. 
Chest x-ray (CXR) has historically been used in TB detection; for mass screenings5, and more recently for prev-
alence surveys and active case finding interventions6,7. It is recommended by the World Health Organization 
(WHO) as a triage test prior to the use of Xpert MTB/Rif8. However, CXR is of only limited use for TB diagnosis 
due to its modest specificity, since many diseases present with similar radiologic patterns9,10, high inter- and 

1Stop TB Partnership, Chemin du Pommier 40, 1218 Le Grand-Saconnex, Geneva, Switzerland. 2Tuberculosis 
Reference Laboratory Bamenda, PO Box 586, Bamenda, Cameroon. 3International Organization for Migration, 
Migration Health Department, Kathmandu, Nepal. 4Present address: Bamenda Regional Hospital, PO Box 818, 
Bamenda, Cameroon. 5Department of Medicine, Division of Pulmonary, Critical Care and Sleep, Warren Alpert 
Medical School, Brown University, Rhode Island, USA. *email: jacobc@stoptb.org

open

https://doi.org/10.1038/s41598-019-51503-3
http://orcid.org/0000-0002-3956-5223
http://orcid.org/0000-0002-4885-940X
mailto:jacobc@stoptb.org


2Scientific RepoRtS |         (2019) 9:15000  | https://doi.org/10.1038/s41598-019-51503-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

intra-reader variability and reproducibility11,12, and the paucity of skilled radiologists in many high TB burden 
countries12.

Several deep-learning (DL) systems have been developed in recent years to analyze digital chest radiographs 
for TB-related abnormalities that could potentially address current shortcomings, including reducing human 
inter-reader variability and reproducibility and supplying radiologic services where radiologists are not available. 
However, current evidence is limited to only one product, CAD4TB (Delft Imaging Systems, Netherlands)6,13,14 
which has been evaluated only with non-DL versions of the software, as DL is new in the current version 6. No 
peer-reviewed evaluations of the performance of any DL system for detecting TB abnormalities exist, nor do any 
compare multiple DL systems with human readers. WHO has not made a recommendation on the use of auto-
mated reading systems for TB due to the current lack of evidence8. To fill the evidence gap, we compared the per-
formance of three different DL applications in detecting bacteriologically-confirmed TB with that of radiologists 
experienced in detecting TB, using datasets from two countries.

Methods
Summary of DL systems. Through a literature review and the database of innovators developed under 
the Accelerator for Impact project at Stop TB Partnership, we identified and contacted eight DL system vendors 
regarding their interest in participating in the evaluation. Three DL systems with stable version control were 
included in this study: CAD4TB (version 6), qXR (version 2) developed by Qure.ai (India), and Lunit INSIGHT 
(Lunit) for Chest Radiography (Version 4.7.2) developed by Lunit (South Korea). We used the latest versions 
available of the three DL systems in this evaluation. CAD4TB version 615 differs from previous versions by using 
DL. Both CAD4TB and Lunit read DICOM (Digital Imaging and Communications in Medicine) format only, 
while qXR can parse digital radiographs stored in PNG and JPEG. CAD4TB detects TB-specific abnormalities 
and outputs continuous abnormality scores ranging from 0 to 100. The greater the abnormality score, the higher 
probability of having TB. Current versions of qXR16 and Lunit17 detect several discrete pulmonary abnormalities, 
such as calcification, cavitation, opacities etc. Both systems present the final results for TB and the specific clinical 
abnormalities in binary (“Yes” / “No”) using a pre-defined threshold abnormality score. The abnormality scores 
for Lunit and qXR range from 0 to 100%. The default threshold abnormality score can be tuned based on screen-
ing requirements. All three DL systems can generate heat maps showing abnormalities.

Study population and study setting. We conducted a retrospective evaluation of the three DL systems 
following the Standards for Reporting of Diagnostic Accuracy (STARD) Initiative on design and conduct of 
diagnostic accuracy evaluation18 using CXR images collected from Nepal and Cameroon as part of different stud-
ies19,20. Adults (aged 15 years or older) with symptoms suggestive of TB (cough more than 2 weeks, fever, night 
sweats, weight loss) were consecutively enrolled in the pulmonary outpatient department (OP) at B.P. Koirala 
Institute of Health Sciences (BPKIHS) in Eastern Nepal between 28 June to 24 December 2015 and in the gen-
eral OP at the Tuberculosis Reference Laboratory Bamenda and the Bamenda Regional Hospital in Cameroon 
between 9 September 2015 and 15 April 2016. Each study participant received a posterior-anterior CXR using 
digital X-ray machines (Phillips DigitalDiagnost in Nepal and Carestream Direct View Classic CR in Cameroon).

In both sites, each CXR was classified as “abnormal” if any pulmonary abnormality was detected by human 
readers, regardless of the abnormality being TB-specific, active or old. In Nepal every radiograph was read twice 
by two groups of radiologists independently. The first read was done by a professor of radiology with a MD in 
radiology at BPKIHS with 21 years of experience; and the second read was done by a group of residents and junior 
radiologists on rotation at BPKIHS, all with MBBS and were students of MD in radiology with 3–5 years’ expe-
rience. In Cameroon, each radiograph was first read by a field radiologist with 9 years’ experience in radiology. 
Regardless of the results of the field radiologist, all CXR were then sent anonymously to a remote teleradiology 
company, called Teleradiology Solutions21, which was accredited in 2005 by Joint Commission.

All participants provided two sputum samples (one spot sputum sample collected during the outpatient visit 
and a next day morning sample). Smear and Xpert were performed for all individuals. If the initial Xpert test 
failed (no result, invalid, error) testing was repeated utilizing the same sample with this result recorded as final. 
Demographic, symptom and medical history data were collected.

While human reading was done prospectively, the three DL systems scored the images retrospectively. The 
images were transferred to the Lunit and qXR for their reading through Secured File Transfer Protocol (SFTP) 
from the Stop TB repository, and to Delft through cloud transfer. All machine reading was performed inde-
pendently with the developers blinded to all testing, clinical and demographic data.

Data analysis. We evaluated the overall performance of the three DL systems using continuous abnormality 
scores and the specific performances at certain threshold scores that meet different performance goals.

The abnormality scores of the three DL systems were disaggregated into Xpert-positive (RIF sensitive, RIF 
resistant, RIF indeterminate) and Xpert-negative groups. We also examined the systems’ performance among 
individuals with negative smear microscopy results as CXR is often used after a negative smear test. Receiver 
operating characteristic (ROC) curves were plotted, using Xpert as the reference, to show the trade-off between 
sensitivity and specificity. The areas under the curve (AUCs) were calculated as the primary index of accuracy 
of DL systems22. Head-to-head comparisons of the three DL systems were performed comparing the AUCs 
(the larger the AUC, the better overall performance of the comparator test to correctly identify diseases and 
non-diseased subjects). Equivalent AUCs do not imply that the sensitivity and specificity of different tests are 
identical at each point on the ROC curves; the curves may have the same overall area but different shapes. Because 
a high sensitivity is desired for a triage test, we further examined a restricted part of the ROCs of the three DL 
systems at a sensitivity level >90%.
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Since there are no generally recommended threshold scores to use, we selected several indicators to evaluate 
different performance goals. First, to compare the performance of the three DL systems and experienced human 
readers to correctly identify images from people with and without bacteriologically confirmed TB, we calculated 
the threshold scores of DL systems corresponding to the observed sensitivity of each of the human readers and 
compared the corresponding specificity as well as accuracy, defined as the proportion of true positives and true 
negatives among the entire population. Second, since the coordinate (0,1) on the ROC plot, i.e. a perfect clas-
sification, represents 100% sensitivity and 100% specificity, we calculated the point on the ROCs closest to the 
coordinate (0,1)23,24 and reported the corresponding sensitivity, specificity and accuracy. Third, because FIND’s 
Target Product Profile (TPP) for a community-based triage or referral test for TB requires a sensitivity ≥95% and 
a specificity ≥80% when compared with the confirmatory test25, we identified the threshold scores to reach 95% 
sensitivity and calculated the corresponding specificity. Fourth, we calculated the sensitivity and specificity if the 
goal was to reduce by half (50%), two thirds (67%), and three quarters (75%) the number of Xpert tests needed 
for follow-on testing after a positive CXR triage test. Finally, we calculated the threshold score, sensitivity and 
specificity while achieving maximum accuracy.

All analyses were performed for each site separately as well as combined. Often, multiple threshold score 
results could satisfy a particular indicator. In these cases, the one which yielded the maximum sensitivity/spec-
ificity was selected. The sensitivity, specificity and accuracy of every point on the ROC curves is reported in the 
Supplementary Information.

All statistical analyses and graphs were produced using R version 3.5.1 (R Foundation for Statistical 
Computing, Vienna, Austria). Data were presented as median with interquartile ranges (IQR).

Ethical approval and informed consent. The study protocols were reviewed and approved by the 
Institutional Reviewing Board at the B.P. Koirala Institute of Health Sciences and the National Ethics Committee 
of Cameroon. Verbal informed consent was obtained from each participant before they were enrolled in the study. 
The study was carried out in accordance with the relevant guidelines and regulations. Patient data, anonymized 
and coded with unique patient identifiers, were transferred and stored on a SFTP server.

Role of the DL system developers. The CAR developers had no role in study design, data collection, 
analysis plan, or writing of the study. The developers only had access to the anonymized CXR images, and did not 
receive any of the demographic, symptom, medical, or testing data of the participants.

Results
Pooled study sites. A total of 1,196 individuals (515 from Nepal and 681 from Cameroon) were included 
in the study with a median age of 46 (IQR: 30–61). The prevalence of Xpert-positive TB was 9.1% (n = 109), 6.6% 
(n = 78) were smear positive, and 41.1% (n = 491) had an abnormal CXR according to the radiologists (Table 1).

The different distributions of the abnormality scores of the three DL systems disaggregated by Xpert result 
are shown in Fig. 1. Although the distribution of the abnormality scores from Xpert positive patients overlaps 
with that from Xpert negative patients, the distributions of the abnormality scores were heavily left-skewed in 
the Xpert positive group, and right-skewed in the Xpert negative group. The degree of skewness was more pro-
found in Lunit’s scoring than in CAD4TB’s and qXR’s scoring in both Xpert positive and Xpert negative groups. 
The skewness of scores of Lunit, qXR, and CAD4TB was −3.77, −2.45 and −1.64 in Xpert positive group, and 
1.03, 1.32, and 0.16 in Xpert negative group, respectively, representing a good separation of individuals with and 
without TB.

The ROC curves of the three DL systems were all well above the diagonal line (or “the line of 
no-discrimination”, representing random guessing) (Fig. 2). Both Lunit (0.94, 95% CI: 0.93–0.96) and qXR (0.94, 
95% CI: 0.92–0.97) had higher AUC point estimates than CAD4TB (0.92, 95% CI: 0.90–0.95), but the differences 
were not statistically significant. qXR performed better when the sensitivity was between 90% and 96%; however, 
the confidence intervals of all three DL systems above 90% overlap (Fig. 2 and Supplementary Information). 
When we restricted the analysis to the 1102 people with negative smear results, the performance of the DL sys-
tems was similar to when all 1,196 individuals were considered (Fig. 3).

We calculated the accuracy, sensitivity and specificity of all four groups of radiologists (two from each site) 
and compared them with the three DL systems. When matching the sensitivity level of the human readers, the 
specificities of Lunit, qXR were significantly higher than the specificity of the four groups of human readers, 
yet they did not have significant differences among themselves. (Table 2). While the specificity of CAD4TB was 
significantly higher than that of the senior Nepali radiologist, the Cameroonian field radiologist and the telera-
diology company, the difference was not significant when compared with the specificity of the group of residents 
and junior radiologists (Table 2). The accuracy of the CAD4TB and Lunit were greater than the four groups of 
human readers when matched by sensitivity, while the accuracy of qXR was higher than all human readers except 
the group of residents and junior radiologists (Table 2).

At the threshold scores that were closest to the coordinate (0,1), the sensitivities of the three DL systems fell 
between 87%-91% and the specificities between 84–89% (Table 3). The maximum specificity while keeping the 
sensitivity above 95% was 80% (77–82%) for CAD4TB, 76% (73–78%) for Lunit, and 72% (69–75%) for qXR 
(Table 3). At 95% sensitivity, eight TB patients were missed by at least one of the DL systems, of whom five were 
considered by 2 the initial readers as normal and two as non-TB abnormal by at least one initial reader. An 
experienced pulmonologist (EJC) with 31-year experience reviewed and annotated these images (Table 4). There 
were two patients that were missed by all DL systems, of which one was graded by the 2 radiologists and senior 
pulmonologists as “normal”, while the other was considered abnormal only by the teleradiology company and the 
senior pulmonologist (EJC).
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Overall Nepal Cameroon

Xpert Positive Xpert Negative Total Xpert Positive Xpert Negative Total Xpert Positive Xpert Negative Total

N 109 1087 1196 94 421 515 15 666 681

Age (median [IQR]) 36 [25, 47] 48 [31, 61] 46 [30, 61] 38 [25, 48.75] 47 [29, 62] 45 [28, 61] 33 [25.50, 38] 48 [32, 61] 47 [32, 61]

Sex = F/M (%) 32/77 
(29.4/70.6)

614/473 
(56.5/43.5)

646/550 
(54.0/46.0)

27/67 
(28.7/71.3)

200/221 
(47.5/52.5)

227/288 
(44.1/55.9)

5/10  
(33.3/66.7)

414/252 
(62.2/37.8)

419/262 
(61.5/38.5)

Cough (%) 105 (96.3) 632 (58.1) 737 (61.6) 93 (98.9) 368 (87.4) 461 (89.5) 12 (80) 264 (39.6) 276 (40.5)

Fever (%) 76 (69.7) 444 (40.8) 520 (43.5) 68 (72.3) 218 (51.8) 286 (55.5) 8 (53.3) 226 (33.9) 234 (34.4)

Weight loss (%) 74 (67.9) 550 (50.6) 624 (52.2) 62 (66) 150 (35.6) 212 (41.2) 12 (80) 400 (60.1) 412 (60.5)

Night Sweats (%) 37 (33.9) 269 (24.7) 306 (25.6) 29 (30.9) 83 (19.7) 112 (21.7) 8 (53.3) 186 (27.9) 194 (28.5)

TB treatment history (%)

Yes 89 (81.7) 982 (90.3) 1071 (89.5) 20 (21.3) 76 (18.1) 96 (18.6) 0 (0) 22 (3.3) 22 (3.2)

No 0 (0.0) 7 (0.6) 7 (0.6) 74 (78.7) 345 (81.9) 419 (81.4) 15 (100) 637 (95.6) 652 (95.7)

Unknown 20 (18.3) 98 (9.0) 118 (9.9) 0 (0) 7 (1.1) 7 (1)

HIV status (%)

Negative 17 (15.6) 254 (23.4) 271 (22.7) 9 (9.6) 50 (11.9) 59 (11.5) 8 (53.3) 204 (30.6) 212 (31.1)

Positive 10 (9.2) 28 (2.6) 38 (3.2) 4 (4.3) 3 (0.7) 7 (1.4) 6 (40) 25 (3.8) 31 (4.6)

Unknown 82 (75.2) 805 (74.1) 887 (74.2) 81 (86.2) 368 (87.4) 449 (87.2) 1 (6.7) 437 (65.6) 438 (64.3)

AFB positive (%) 76 (70.4) 2 (0.2) 78 (6.6) 67 (71.3) 1 (0.2) 68 (13.2) 9 (64.3) 1 (0.2) 10 (1.5)

Xpert positive (%) 109 (100.0) 0 (0.0) 109 (9.1) 94 (100) 0 (0) 94 (18.3) 15 (100) 0 (0) 15 (2.2)

CAD4TB (median 
[IQR]) 86 [75, 99] 45 [25, 54] 46 [28, 59] 86 [77, 99] 48 [25, 69] 54 [40.5, 79.5] 77 [58, 99] 44 [25, 49] 44 [25, 50]

Lunit (median [IQR]) 0.99 [0.97, 0.99] 0.08 [0.01, 0.51] 0.10 [0.01, 0.80] 0.99 [0.97, 0.99] 0.37 [0.05, 0.90] 0.69 [0.09, 0.96] 0.97 [0.90, 0.98] 0.03 [0.01, 0.15] 0.03 [0.01, 0.18]

qXR (median [IQR]) 0.90 [0.82, 0.94] 0.17 [0.10, 0.36] 0.19 [0.11, 0.50] 0.92 [0.84, 0.94] 0.30 [0.12, 0.65] 0.44 [0.14, 0.82] 0.78 [0.64, 0.86] 0.14 [0.09, 0.23] 0.15 [0.10, 0.24]

Senior Radiologist 
(Nepal) = Normal 
CXR (%)

4 (4.3) 203 (48.2) 207 (40.2)

Junior Radiologist 
& Residents 
(Nepal) = Normal 
CXR (%)

12 (12.8) 290 (68.9) 302 (58.6)

Radiologist 
(Cameroon) = Normal 
CXR (%)

3 (20) 495 (74.3) 498 (73.1)

Teleradiology 
Company 
(Cameroon) = Normal 
CXR (%)

3 (20) 494 (74.2) 497 (73.0)

Table 1. Demographic and Clinical Characteristics of People Screened with Chest X-ray and Xpert MTB/RIF.

Figure 1. Frequency distribution of the abnormality scores of CAD4TB, Lunit, and qXR.
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When the goal was to reduce the number of follow-on Xpert tests by half, the sensitivities for all three DL 
systems remained high, between 97–99% with no statistical difference among the DL systems. Similarly reducing 
the follow-on Xpert tests by two thirds and three quarters, the sensitivities of DL systems reduced to between 
95–96% and 93–94% respectively without significant differences between the three DL systems (Table 3). The 
highest accuracy of the three DL systems were between 0.92 and 0.94; however, the corresponding sensitivity was 
between 47–71% limiting its usefulness as an indicator. The sensitivity, specificity and accuracy of every point on 
the three ROC curves are reported in the Supplementary Information.

Figure 2. The ROC curves of CAD4TB (v6), Lunit (v4.7.2) and qXR (v2) using Xpert results as the reference 
(n = 1196).

Figure 3. The ROC curves of CAD4TB (v6), Lunit (v4.7.2) and qXR (v2) among individuals with negative 
smear (n = 1102)
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Individual study sites. The three DL systems also performed similarly when stratified by study site despite 
demographic difference between the sites. In Nepal, 94 (18.3%) were Xpert positive, and 68 (13.2%) were smear 
positive. The AUCs of CAD4TB, Lunit, and qXR were 0.87 (95% CI: 0.84–0.91), 0.91 (95% CI: 0.88–0.94), and 
0.91 (95% CI: 0.88–0.94), respectively (Fig. 4a).

In Cameroon, 15 (2.2%) were Xpert positive, and 10 (1.5%) were smear positive. The point estimates of the 
AUCs were higher than in Nepal. The Cameroon AUCs of CAD4TB, Lunit, and qXR were 0.90 (95% CI: 0.79–1), 
0.93 (95% CI: 0.86–1), and 0.93 (95% CI: 0.85–1), respectively (Fig. 4b).

The different cutoff thresholds were higher in Nepal than Cameroon. For example, the cutoff threshold to 
maximize specificity while keeping sensitivity above 95% for CAD4TB was 63 in Nepal but 48 in Cameroon 
(Table 5). If the thresholds were kept nominally the same, the corresponding sensitivities and specificities 
changed. For instance, CAD4TB at the threshold score of 63 had a sensitivity of 95% (95%CI: 88–98%) and speci-
ficity of 69% (95%CI: 65–74%); in Nepal while using the same 63 threshold produced a sensitivity of 67% (95%CI: 
38–88%) and a specificity of 93% (95%CI: 91–95%) (data shown in Supplementary Information).

Discussion
This is the first evaluation of multiple DL systems for detecting TB abnormalities in CXR. We observed that all 
three systems performed significantly better than human radiologists and had higher AUCs than most of the 
current published literature on previous versions of CAD4TB6. Our results also document the first published 
evaluation of qXR and Lunit for detecting TB. There was no statistical difference among the AUCs of CAD4TB, 
Lunit, and qXR across the study sites, in pooled analysis, and when only smear negative individuals were consid-
ered. The point estimate for qXR and CAD4TB met the TPP target for a community-based triage test. However, 
there was no statistical difference between the specificity of CAD4TB and Lunit at the sensitivity level of 95% and 
a marginal difference with qXR. The overall performance of the three DL systems was similar in multiple analyses 
and stratifications. Implementers considering using DL systems for CXR reading should take into account other 
factors including service, ease of use, maintenance and price - all important considerations in any new technology 
implementation26.

Human Readers

Deep Learning Systems

CAD4TB (v6) Lunit (v4.7.2) qXR (v2)

Accuracy
Sensitivity 
(95%CI)

Specificity 
(95% CI) Accuracy

Sensitivity 
(95% CI)

Specificity 
(95% CI) Accuracy

Sensitivity 
(95% CI)

Specificity 
(95%CI) Accuracy

Sensitivity 
(95% CI)

Specificity 
(95% CI)

Nepal

Senior Radiologist 0.57
0.96 0.48

0.74
0.96 0.69

0.67
0.96 0.6

0.7
0.97* 0.65

(0.89–0.99) (0.43–0.53) (0.89–0.99) (0.64–0.73) (0.89–0.99) (0.55–0.65) (0.91–0.99) (0.6–0.69))

Junior Radiologist & 
Residents 0.72

0.87 0.69
0.77

0.87 0.75
0.85

0.87 0.78
0.69

0.87 0.81

(0.79–0.93) (0.64–0.73) (0.79–0.93) (0.71–0.79) (0.79–0.93) (0.73–0.82) (0.79–0.93) (0.76–0.84)

Cameroon

Radiologist 0.74
0.8 0.74

0.9
0.8 0.9

0.94
0.8 0.94

0.94
0.8 0.95

(0.52–0.96) (0.71–0.78) (0.52–0.96) (0.87–0.92) (0.52–0.96) (0.92–0.96) (0.52–0.96) (0.93–0.96)

Teleradiology 
Company 0.74

0.8 0.74
0.9

0.8 0.9
0.94

0.8 0.94
0.94

0.8 0.95

(0.52–0.96) (0.71–0.77) (0.52–0.96) (0.87–0.92) (0.52–0.96) (0.92–0.96) (0.52–0.96) (0.93–0.96)

Table 2. Radiologist and Deep Learning System Performance for Chest Radiographs and Tuberculosis. *The 
sensitivity of qXR version 2 closest to that of the senior radiologist is 97%, instead of 96%.

Thresholds

CAD4TB (v6) Lunit (v4.7.2) qXR (v2)

Threshold Accuracy
Sensitivity 
(95% CI)

Specificity 
(95% CI) Threshold Accuracy

Sensitivity 
(95% CI)

Specificity 
(95% CI) Threshold Accuracy

Sensitivity 
(95% CI)

Specificity 
(95% CI)

ROC01# 63 0.85 0.91
(0.84–0.96)

0.84
(0.82–0.86) 0.92 0.89 0.87

(0.79–0.93)
0.89
(0.87–0.91) 0.67 0.86 0.88

(0.8–0.93)
0.89
(0.87–0.91)

Sensitivity ≥95% 57 0.81 0.95
(0.9–0.98)

0.8
(0.77–0.82) 0.55 0.77 0.95

(0.9–0.98)
0.76
(0.73–0.78) 0.49 0.83 0.95

(0.90–0.98)
0.82
(0.79–0.84)

Reduce Xpert tests 
by 1/2 47 0.61 0.97

(0.92–0.99)
0.57
(0.54–0.6) 0.11 0.6 0.99

(0.95–1)
0.56
(0.53–0.59) 0.18 0.57 0.97

(0.92–0.99)
0.53
(0.5–0.56)

Reduce Xpert tests 
by 2/3 53 0.75 0.96

(0.91–0.99)
0.73
(0.7–0.76) 0.39 0.74 0.95

(0.9–0.98)
0.72
(0.69–0.74) 0.34 0.75 0.96

(0.91–0.99)
0.73
(0.7–0.76)

Reduce Xpert tests 
by 3/4 59 0.82 0.94

(0.87–0.97)
0.82
(0.79–0.84) 0.79 0.82 0.93

(0.86–0.97)
0.81
(0.79–0.84) 0.5 0.83 0.93

(0.86–0.97)
0.82
(0.8–0.84)

Max Accuracy 88 0.92 0.47
(0.37–0.57)

0.96
(0.95–0.97) 0.98 0.94 0.58

(0.48–0.67)
0.97
(0.96–0.98) 0.84 0.94 0.71

(0.61–0.79)
0.96
(0.94–0.97)

Table 3. Performance of CAD4TB (v6), Lunit (v4.7.2), and qXR (v2) at Selected Thresholds. #ROC01: the point 
on the ROC that was closest to the coordinates (0,1), the perfect classification.
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This study demonstrates that these DL systems have the potential to increase capacity and aid TB diagnosis, 
especially in settings with a shortage of trained human readers which have been noted as shortcomings in CXR 
use8. When we compared the performance of DL systems and radiologists, all three systems were better than 
human readers in detecting bacteriologically confirmed TB. Although past publications on previous versions of 
CAD4TB had contradictory findings13,27–30, our study evaluated the latest version of CAD4TB, showing improved 
performance. There are a number of other DL systems that are at different stages of development and commer-
cialization31. As new CAR products and new versions enter the market at a pace quicker than other types of TB 
diagnostics, it will be critical to monitor the performance of these successive digital products and versions.

Heads of State in the United Nations High Level Meeting (UNHLM) on TB in 2018 committed to urgent 
global responses to end TB, including diagnosing and treating a cumulative 40 million people by 202232. 
Significant financial investments in diagnosis are needed to achieve UNHLM commitments. This study demon-
strates that DL applications can be used to triage patients in order to reduce the number of expensive follow-on 
tests, while still maintaining high sensitivity. When the threshold score was set to reduce by half the number 
of Xpert tests, the sensitivities of the three DL applications were still between 97%-99% (Table 3). Even a two 
thirds or three quarters reduction in follow-on Xpert testing using the DL systems only reduced the sensitivity 

Individual 
Missed

Senior 
Radiologist 
(Nepal)

Junior Radiologist 
& Residents 
(Nepal)

Field 
Radiologist 
(Cameroon)

Teleradiology 
Company 
(Cameroon) DL reading

CAD4TB 
score

qXR 
score

Lunit 
score

Annotation by a senior 
pulmonologist

Nepal 1 Normal Normal NA NA Missed by all 3 
DL systems 9 0.1205 0.2330 Normal

Nepal 2 Abnormal Abnormal NA NA Missed by qXR 65 0.4225 0.9853
Abnormal: may be an 
azygous lobe (normal 
variant) but also could be 
apical TB

Nepal 3 Abnormal Abnormal NA NA Missed by Lunit 71 0.5223 0.3458
Abnormal maybe old 
scar: minimal tenting of 
the right diaphragm

Nepal 4 Normal Normal NA NA Missed by Lunit 
and qXR 63 0.1517 0.1318

Non-TB abnormality: 
elevated right 
hemidiaphragm

Nepal 5 Normal Normal NA NA
Missed by 
CAD4TB and 
Lunit

46 0.4992 0.2728 Normal

Cameroon 1 NA NA Normal Abnormal Missed by all 3 
DL systems 48 0.1259 0.0176

Abnormal in the left 
mid lung field by the 
heart- could be TB but 
not classic

Cameroon 2 NA NA Normal Normal Missed by 
CAD4TB 53 0.6695 0.8744

Abnormal: ill defined 
infiltrate in the right 
upper lung field

Cameroon 3 NA NA Normal Normal
Missed by 
CAD4TB and 
qXR

18 0.2504 0.5518 Normal lung field but 
cardiomegaly

Table 4. Individuals with Bacteriologically Confirmed TB, Missed by Deep Learning Systems at 95% 
Sensitivity.

Figure 4. (a) The ROC curves of CAD4TB (v6), Lunit (v4.7.2) and qXR (v2) in Nepal (n = 515). (b) The ROC 
curves of CAD4TB (v6), Lunit (v4.7.2) and qXR (v2) in Cameroon (n = 681).
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to 95–96% and 93–94%, respectively (Table 3). We observed that as Xpert tests were reduced, the sensitivity only 
slightly decreased while the specificity and accuracy increased greatly, which matches the observation from the 
ROC curves of the three DL systems. The ROC curves were relative flat with small slopes at a high sensitivity level 
(above 90%), which means a large gain in specificity (moving leftward on the x-axis) only come at a small decrease 
in sensitivity (moving downward on the y- axis). This is a hallmark of a good diagnostic test.

This study included two datasets with different prevalence of TB. The high prevalence of TB among the study 
population in Nepal is similar to targeted facility-based case finding or routine passive case finding, where the 
yield has been 10–20% in many countries33. The lower TB prevalence among the study population in Cameroon is 
similar to the expectations of active case finding34. The results stratified by sites were similar to the findings from 
the general analysis with no statistical difference among the DL systems.

The observation that DL system performance at similar thresholds could vary greatly is of critical importance 
to implementers. For example, in the high TB prevalence case finding study in Nepal, CAD4TB had a sensitivity 
of 95% at the threshold score of 63, but the threshold score would need to be lowered to 48 in the lower TB prev-
alence case finding study in Cameroon to reach the same sensitivity. While the current WHO guidance for these 
computer-aided detection software for TB emphasizes the need of predefined threshold scores8, our results clearly 
indicate the need for implementers to conduct their own pilot on the specific population being tested. A previous 
study found differences in performance by age and by referral site13. With large datasets, it may be possible to 
tailor specific thresholds depending on the characteristics of individuals screened. In some published literature, 
specific threshold scores for different versions of CAD4TB have been used and following these scores or manu-
factures default settings may produce different results across settings.

There are a number of limitations in our study. Due to logistic and budgetary constraints, we did not use 
culture as the reference standard. Using Xpert as the reference standard has the potential to bias the diagnostic 
accuracy assessment due to limited sensitivity for smear-negative TB compared to culture: however, WHO rec-
ommends Xpert use as a reference in evaluations of the computer-aided detection software8. We were not able to 
obtain the HIV status of some of the participants in both sites, limiting our ability to analyze the products in this 
population. Lastly, since we retrospectively collected and analyzed the radiographs in the sites where CAD4TB 
was implemented, the radiographs had been read by earlier versions of CAD4TB. However, neither qXR nor Lunit 
had seen the images prior to this study.

Conclusion
Lunit and qXR performed as well as CAD4TB across different analysis metrics and all three DL automated read-
ing systems outperformed experienced human readers in differentiating people with bacteriologically confirmed 
TB and those without. While only qXR and CAD4TB technically met FIND’s TPP for a triage test of ≥95% 
sensitivity and ≥80% specificity in this analysis, all three products had similar performance and can be used to 
reduce the number of follow-on tests while keeping sensitivity high, providing a cost savings that could be applied 
toward proposed equipment and introduction costs of an DL system. The principle of AI is that performance 
will improve with exposure to additional training examples. These new technologies therefore have the potential 

CAD4TB (v6) Lunit (v4.7.2) qXR (v2)

Thresholds Accuracy
Sensitivity 
(95%CI)

Specificity 
(95%CI) Thresholds Accuracy

Sensitivity 
(95%CI)

Specificity 
(95%CI) Thresholds Accuracy

Sensitivity 
(95%CI)

Specificity 
(95%CI)

Nepal

Sensitivity 
≥95% 63 0.74 0.95

(0.88–0.98)
0.69
(0.65–0.74) 0.8 0.71 0.95

(0.88–0.98)
0.66
(0.61–0.7) 0.52 0.72 0.95

(0.88–0.98)
0.67
(0.62–0.71)

Reduce Xpert 
tests by 1/2 55 0.68 0.98

(0.93–1)
0.61
(0.56–0.66) 0.69 0.67 0.96

(0.89–0.99)
0.6
(0.55–0.65) 0.44 0.67 0.97

(0.91–0.99)
0.61
(0.56–0.65)

Reduce Xpert 
tests by 2/3 73 0.78 0.81

(0.71–0.88)
0.78
(0.73–0.82) 0.93 0.79 0.87

(0.79–0.93)
0.78
(0.73–0.82) 0.7 0.81 0.9

(0.83–0.96)
0.79
(0.75–0.83)

Reduce Xpert 
tests by 3/4 80 0.82 0.7

(0.6–0.79)
0.85
(0.81–0.88) 0.96 0.85 0.81

(0.71–0.88)
0.86
(0.83–0.9) 0.82 0.86 0.79

(0.69–0.86)
0.88
(0.84–0.91)

Max Accuracy 94 0.85 0.35
(0.26–0.46)

0.96
(0.93–0.97) 0.98 0.89 0.63

(0.52–0.73)
0.94
(0.92–0.96) 0.88 0.88 0.67

(0.57–0.76)
0.92
(0.89–0.95)

Cameroon

Sensitivity 
≥95% 48 0.7 0.93*

(0.68–1)
0.7
(0.66–0.73) 0.55 0.88 0.93*

(0.68–1)
0.88
(0.86–0.91) 0.25 0.78 0.93*

(0.68–1)
0.78
(0.74–0.81)

Reduce Xpert 
tests by 1/2 45 0.54 0.93

(0.68–1)
0.53
(0.5–0.57) 0.03 0.51 0.93

(0.68–1)
0.5 
(0.46–0.53) 0.14 0.48 0.93

(0.68–1)
0.47
(0.44–0.51)

Reduce Xpert 
tests by 2/3 47 0.66 0.93

(0.68–1)
0.65
(0.61–0.69) 0.1 0.68 0.93

(0.68–1)
0.68
(0.64–0.71) 0.2 0.7 0.93

(0.68–1)
0.69
(0.66–0.73)

Reduce Xpert 
tests by 3/4 50 0.77 0.87

(0.6–0.98)
0.76
(0.73–0.79) 0.17 0.77 0.93

(0.68–1)
0.76
(0.73–0.79) 0.24 0.77 0.93

(0.68–1)
0.77
(0.74–0.8)

Max Accuracy 90 0.99 0.4
(0.16–0.68)

1
(0.99–1) 0.97 0.98 0.4

(0.16–0.68)
0.99
(0.98–0.99) 0.77 0.98 0.53

(0.27–0.79)
0.99
(0.97–0.99)

Table 5. Performance of CAD4TB (v6), Lunit (v4.7.2), and qXR (v2) at Selected Thresholds Stratified by Study 
Sites. *Due to the limited number of Xpert-positive patients in the site in Cameroon, the sensitivity closest to 
95% is 93%.
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to augment the capacity of, and improve overall TB diagnosis and care, especially in settings with a shortage of 
trained radiologists.

Data availability
Data and materials used in this study are available upon reasonable request to the corresponding author and 
under a collaboration agreement.
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