

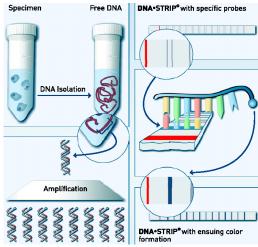




# The changing environment for diagnostics implementation

Karin Weyer

Laboratories, Diagnostics and Drug Resistance






## Strengthening TB laboratories

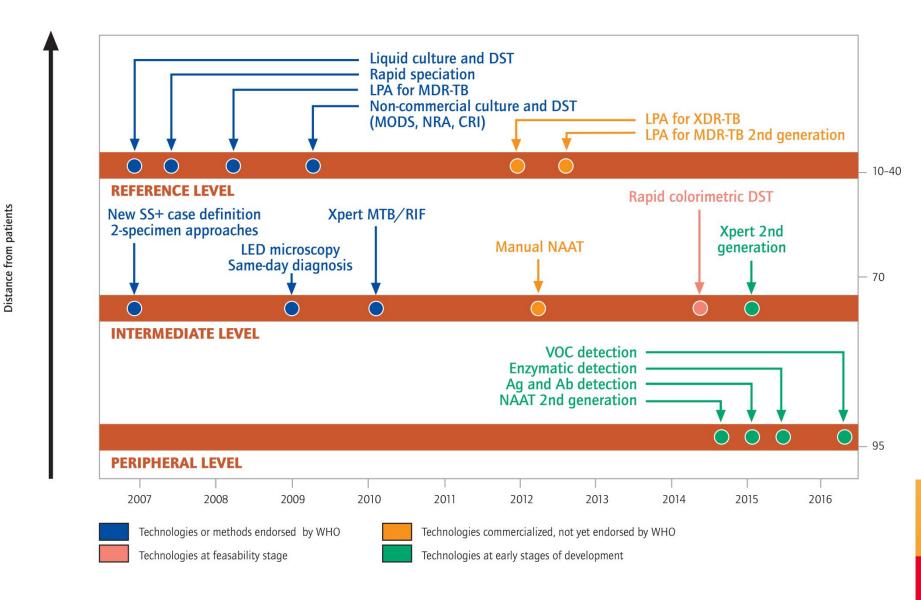
## 'From unimaginable...to indispensable'







1st GLI Meeting, Annecy April 2008




## Landscape rapidly changing

- Growing diagnostics pipeline
- Accelerated WHO policy formulation
- Policy transfer, uptake and innovation
- Policy impact
- Access to new diagnostics and laboratory services
- Need to align diagnosis, treatment and care delivery



### The development pipeline for new TB diagnostics



Access after 5 years (%)

#### Acceleration

- Tools development: At least 20 new technologies in various stages of development and evaluation in last 10 years
- WHO policy formulation\*
  - 2007: New SS+ case definition, two-specimen approach, liquid
    - culture, rapid speciation
  - 2008: Line probe assay
  - 2009: LED microscopy, 'same-day diagnosis', selected non
    - commercial culture and drug susceptibility testing methods
  - 2010: Xpert MTB-RIF
  - 2011: IGRAs, commercial serodiagnostics
  - 2012: TB laboratory biosafety
  - 2012: Updated guidance on drug susceptibility testing
- Access to new diagnostics and laboratory strengthening (GLI and EXPAND-TB)



## Tools/methods not recommended

- Evidence base too weak, to be reassessed
  - 2009: Sputum processing methods
  - 2009: TLA method for rapid DST
  - 2010: LPA for XDR-TB
  - 2012: TB-LAMP
- 'Negative' policy (do-not-use)
  - 2011: Commercial serodiagnostics
  - 2011: IGRAs (high TB or HIV burden settings)




## Policy pipeline 2013

- Guidance on drug susceptibility testing
  - Update on 2008 guidance
- LPA update
  - Update on 2008 guidance
  - New 2nd-line LPA (XDR)
- Xpert MTB/RIF update
  - Extra-pulmonary TB
  - Paediatric TB



### WHO TB diagnostics policy formulation process



- WHO strategic monitoring of country needs
- Partners (researchers, industry, etc)
- Body of evidence available
- Commissioning of systematic reviews
- QUADAS or other diagnostic accuracy tool
- Meta-analyses (where feasible)
- Experts, methodologists, end-users
- Guidelines Review Committee
- GRADE process for evidence synthesis
- Strategic and Technical Advisory Group
- Endorsement/revision/addition
- Advise to WHO to proceed/not with policy
- Guidelines Review Committee
- Dissemination to Member States
- Promotion with stakeholders & funders
- Phased implementation & scale-up plan

#### Figure 4. Body of evidence required by WHO for policy development

#### **Phase 1: Research and Development**

- Upstream research and development to define and validate a prototype
- Laboratory validation under international standards that culminate in a design-locked product
- WHO may interact with developers to discuss end-user requirements

#### **Phase 2: Evaluation and Demonstration**

- Controlled trials at 3-5 trial sites in high-burden TB and HIV countries
- Data often used for product registration with global and/or national regulatory authorities
- Product specifications, performance validated in field trials in 5-10 intended-use sites

#### Phase 3: WHO evidence assessment using GRADE

- New technologies/new indications for use: Dossier with Phase 1 and 2 data to WHO for assessment
- Fast-follower/generic technologies: ISO 13:485 standards; equivalence shown in 2-3 SRLs
- WHO is not a regulatory authority and does not recommend technologies for individual country use

#### Phase 4: Phased uptake & evidence for scale-up

- Implementation in routine TB services by early implementers in high-burden TB and HIV countries
- Systematic assessment of algorithms, laboratory workload, operational constraints, cost-effectiveness
- Lessons learnt by early implementers used for country adaptation

#### Phase 5: Scale-up & policy refinement

• Scale-up, with subsequent data to inform and refine WHO policy guidance

## **GRADE** evolution for TB Diagnostics

- Refined quality assessment tools (eg. QUADAS-2)
- Refined statistical methodology for meta-analyses
- Standardised proxies for patient- and public health impact
- Cost-effectiveness modeling
- But: Test-specific recommendations necessary
  - Different technologies, targets, performance characteristics

| Table 1: Pooled values (95% CI) of sensitivity and specificity of five commercial NAATs for pulmonary TB in 60 published studies (Greco, Girardi et al. 2006) |             |             |             |                |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|----------------|--|
| Test                                                                                                                                                          | AFB+        |             | AFB-        |                |  |
|                                                                                                                                                               | Sensitivity | Specificity | Sensitivity | Specificity    |  |
| Amplicor (PCR)                                                                                                                                                | 96 (94-97)  | 83 (80-86)  | 61 (57-65)  | 97 (96.8-97.4) |  |
| Cobas Amplicor (PCR)                                                                                                                                          | 96 (95-97)  | 74 (68-8)   | 64 (59-69)  | 99 (99.2-99.4) |  |
| BDP (SDA)                                                                                                                                                     | 98 (96-99)  | 89 (84-93)  | 71 (66-76)  | 97 (96.4-97.4) |  |
| E-MTD (TMA)                                                                                                                                                   | 97 (95-98)  | 96 (93-97)  | 76 (70-80)  | 97 (96.6-97.4) |  |
| LCx (LCR)                                                                                                                                                     | 96 (94-98)  | 71 (64-78)  | 57 (50-64)  | 98 (97.8-98.5) |  |



PCR: polymerase chain reaction; SDA: strand displacement amplification; TM: transcription mediated amplification; LCR: <u>ligase</u> chain reaction.

## Policy uptake at country level (1)

#### Rapid uptake

- SS+ case definition
- Xpert MTB/RIF

#### Limited or no uptake

- Two-specimen strategy
- Same-day-diagnosis
- Non-commercial culture and DST methods

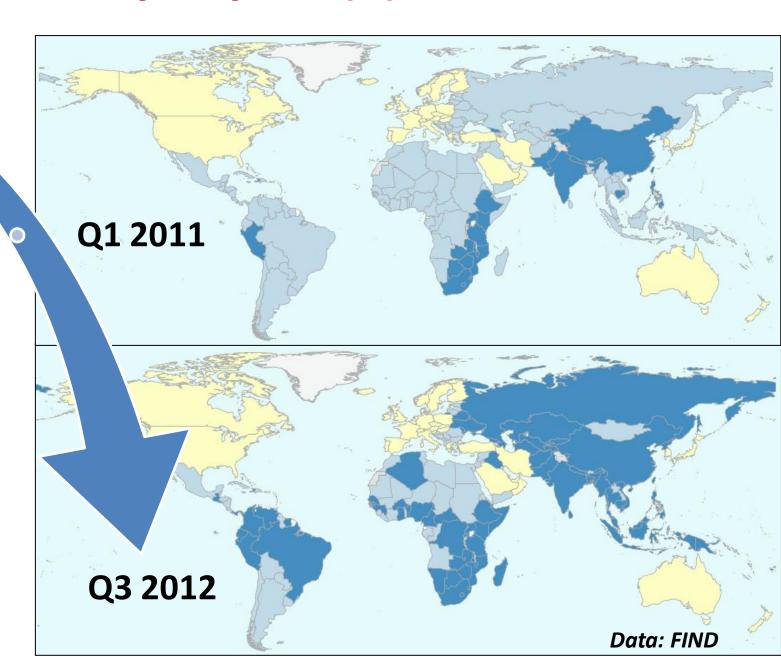
#### Gradual uptake

- LED microscopy
- Liquid culture and DST
- Rapid speciation
- Line probe assay

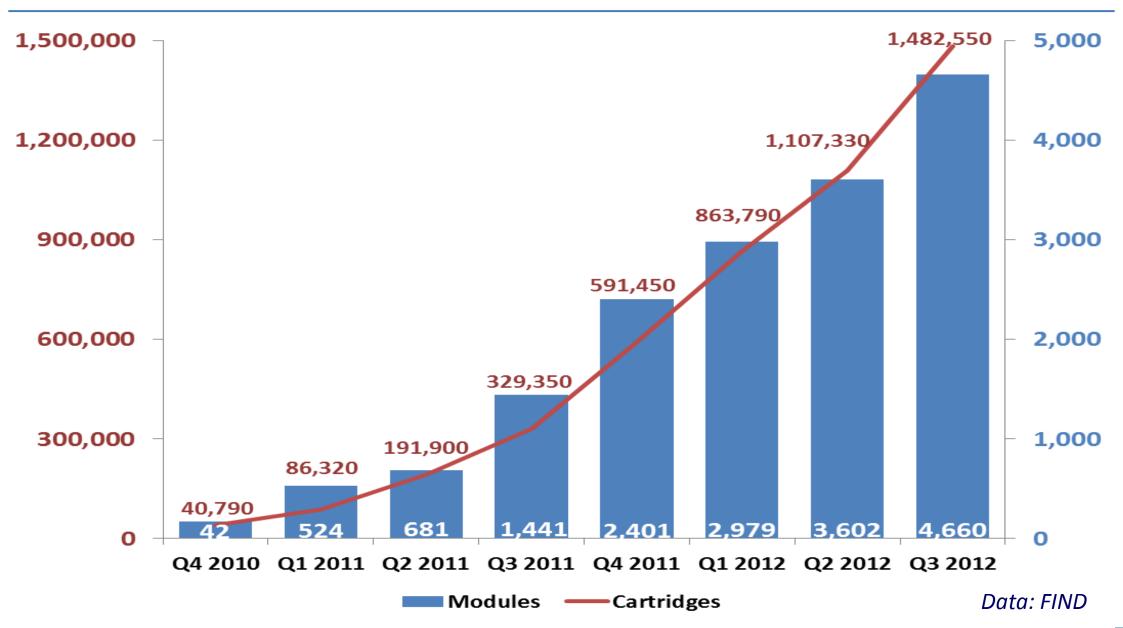


# Global Tuberculosis Report 2012

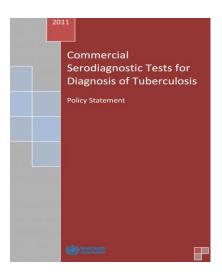
## Policy uptake at country level (2)


| sis        | Incorporation of WHO policy guidance for diagnosis of TB, 2011 | High-burden<br>countries | High MDR-TB<br>burden<br>countries | Global |
|------------|----------------------------------------------------------------|--------------------------|------------------------------------|--------|
| <b>(4)</b> | Conventional drug susceptibility testing (DST)                 | 95%                      | 100%                               | 85%    |
|            | Liquid culture and rapid speciation test                       | 73%                      | 75%                                | 67%    |
|            | Line probe assay for detecting resistance to rifampicin        | 64%                      | 74%                                | 44%    |
|            | Algorithm for the diagnosis of TB in people living with HIV    | 86%                      | 87%                                | 74%    |
|            | Xpert MTB/RIF assay                                            | 64%                      | 50%                                | 33%    |

## Policy impact (1)




99 GeneXperts (524 modules) in the public sector in 23 countries


898 GeneXperts (4,660 modules) in the public sector in 73 countries



## Cumulative number of GeneXpert modules and Xpert MTB/RIF cartridges procured under concessional pricing



## Policy impact (2)



#### First 'negative' policy guidance by WHO

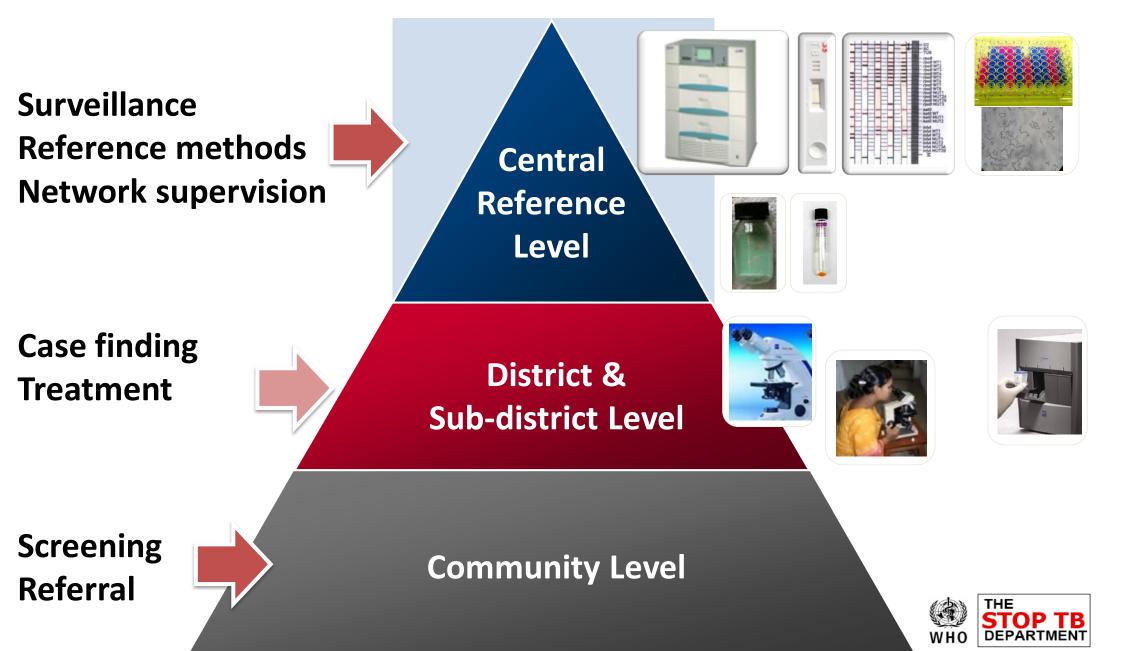
#### Unprecedented political commitment by India





## Laboratory capacity, 2011

|                                 | Smear microscopy:<br>Laboratories per<br>100,000 population | Culture: Laboratories per 5 million population | <b>DST</b> : Laboratories per 5 million population | Line probe assay: Laboratories per 5 million population |
|---------------------------------|-------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| 22 high TB burden countries     | 1.1                                                         | 1.5                                            | 0.4                                                | <0.1                                                    |
| 27 high MDR-TB burden countries | 0.9                                                         | 1.3                                            | 0.4                                                | 0.1                                                     |
| Global                          | 1.1                                                         | 3.9                                            | 0.8                                                | 0.2                                                     |


- 15 of the 22 high TB burden countries have ≥1 microscopy centre per 100,000 population
- 17 of the 36 high TB / MDR-TB burden countries have ≥1 culture and DST laboratories per 5 million population



#### WHO/GLI Supranational Reference Laboratory Network



## Tools in tiered heath services



## **Tools in combination**

early diagnosis & care

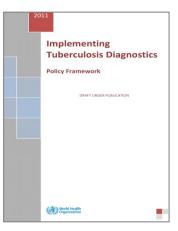
smear-negative TB

rapid resistance detection

|  | Year        | Technology                                | Turnaround time        | Sensitivity<br>gain       |
|--|-------------|-------------------------------------------|------------------------|---------------------------|
|  | Before 2007 | ZN microscopy<br>Solid Culture            | 2-3 days<br>30-60 days | Baseline                  |
|  | 2007        | Liquid Culture / DST<br>Rapid speciation  | 15-30 days             | +10% compared<br>to LJ    |
|  | 2008        | Line Probe Assay<br>(1st line, Rif & INH) | 2-4 days               | S+ only                   |
|  | 2009        | LED-based FM                              | 1-2 days               | +10% compared<br>to ZN    |
|  | 2009        | In house DST<br>(MODS, CRI, NRA)          | 15-30 days             | 1 <sup>st</sup> line only |
|  | 2010        | Xpert MTB/RIF<br>(TB, R resistance)       | 100 minutes            | +40% compared<br>to ZN    |

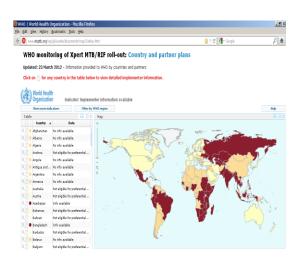
## Tools in different algorithms




One size no longer fits all



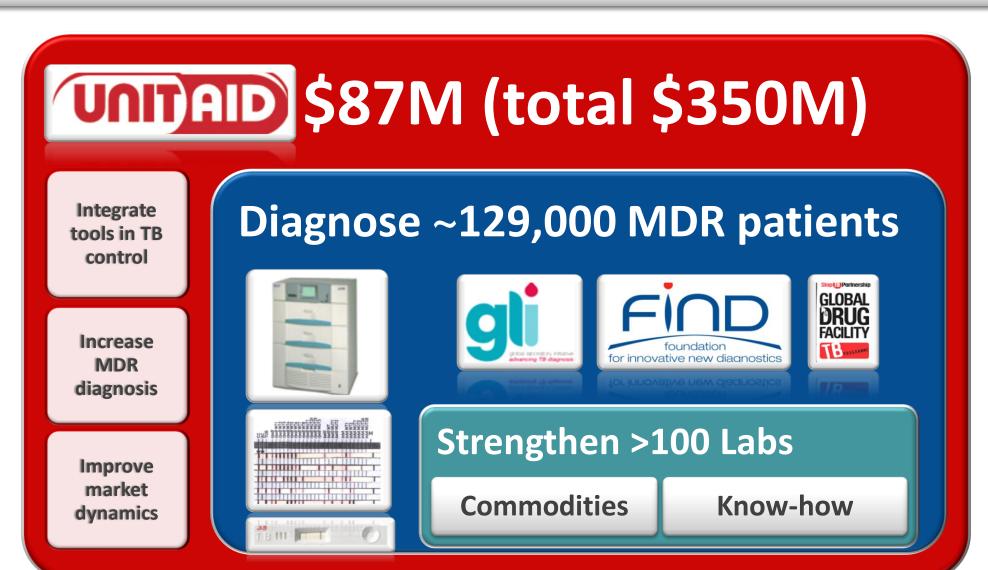

#### **Guidance documents**


- GLI Roadmap, Tools Set, Accreditation Guide
- WHO Policy Framework for Implementing TB Diagnostics
- WHO Fact Sheets
- 'How to' documents and online tracking
  - Xpert MTB/RIF Rapid Implementation Document
  - Xpert MTB/RIF Checklist
  - Xpert MTB/RIF Website and Online Data Collection Tool
















## **EXPanding Access to New Diagnostics for TB**



Project countries and partners



## **Project Status**

#### Laboratory preparedness

- Laboratory assessment
- Memorandum of **Understanding**
- Infrastructure upgrade
- Creation of SOPs
- Policy reform

#### 18-24 months

- Belarus
- Indonesia
- Kazakhstan

#### **Technology** transfer

- Equipment and supplies
- Procurement
- Training
- Quality assurance
- Laboratory validation

#### **Routine testing** and monitoring

- Monitoring and evaluation
- Impact assessment
- Market dynamics

#### 6-12 months

- Mozambique
- **Rwanda**
- Senegal
- Peru
- **Viet Nam**
- Labs established: 58 out of 101
- •19 countries reporting MDR-TB cases
- •More that 21,000 MDR-TB cases already diagnosed

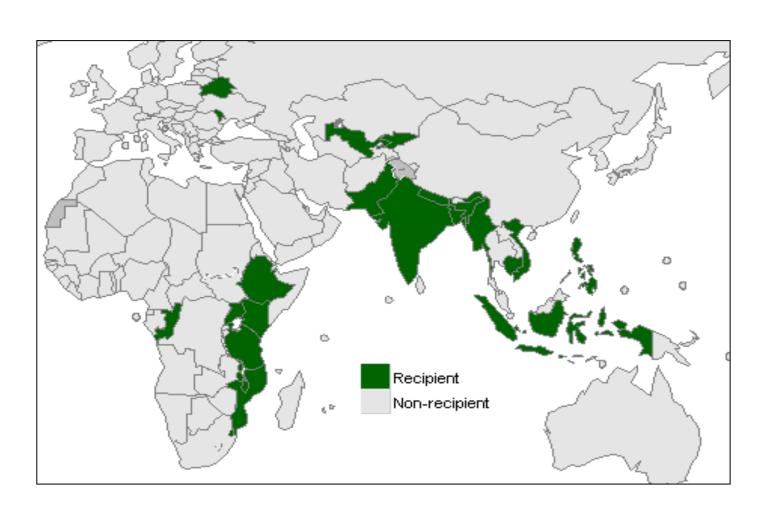
#### Up to year 5

- **Azerbaijan**
- Bangladesh
- Cameroon
- **Côte d'Ivoire**
- Djibouti
- **Ethiopia**
- Georgia
- India
- Uganda

- Kenya
- **Kyrgyzstan**
- Lesotho
- Myanmar
- **Tajikistan**
- **Rep Moldova**
- **UR Tanzania**
- **Uzbekistan**
- **Swaziland**

Haiti

## **TBXpert Project**


- USD 25.9 million UNITAID-funded project for procurement of GeneXperts and Xpert MTB/RIF cartridges
  - Consortium: WHO Stop TB Department, Stop TB Partnership,
     Global Laboratory Initiative (GLI), TB REACH, EXPAND-TB,
     African Society for Laboratory Medicine (ASLM),
     Interactive Research and Development (IRD)

#### Project objectives:

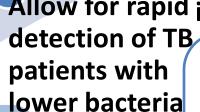
- To reduce the cartridge price from 16.86 USD to 9.98 USD to generate demand and create a sustainable market
- To rapidly scale-up implementation of Xpert MTB/RIF in target countries using effective diagnostic algorithms
- To develop and establish innovative PPM models to accelerate uptake and increase demand

## **TBXpert Project**

>200 GeneXpert devices and 1.4 million Xpert MTB/RIF cartridges in 21 countries, 2013-2015



## Impact of Xpert MTB/RIF


- Early and rapid case detection
- **Increase** in number of TB and R-resistant cases
- Reduced need (but not eliminated) for conventional laboratory services

Urgent need to match diagnosis with treatment and care delivery

More TB
patients are
found earlier
Allow for rapid in the course

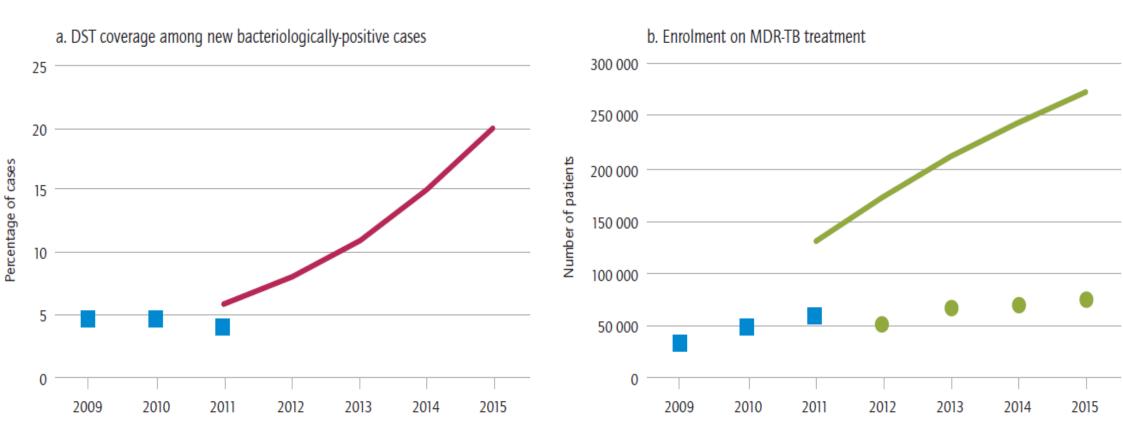
Early and rapid case finding allows earlier intervention and

Reduction in mortality, suffering from and disease transmission



Rapid TB testad with higher sensitivity, used widely



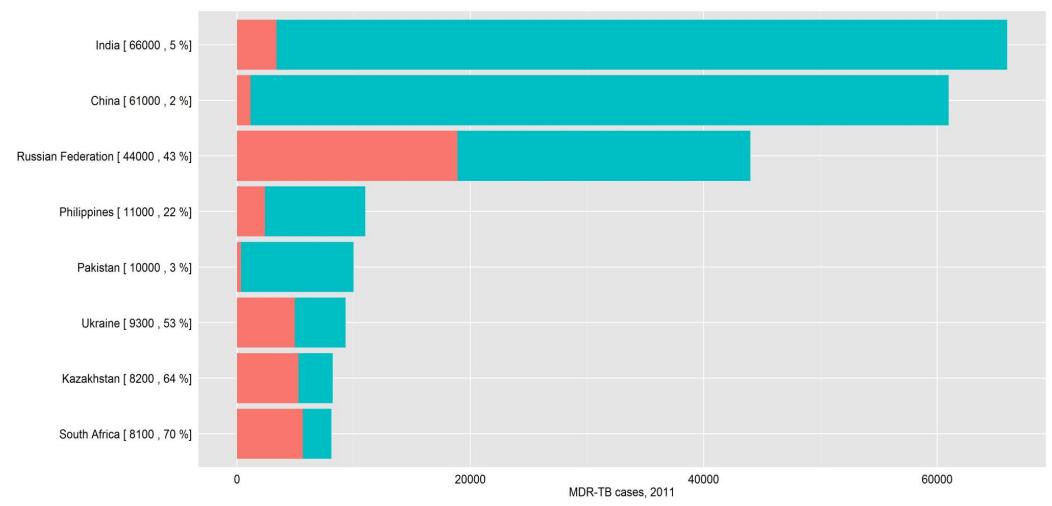

- Sensitivity close to culture
- High specificity
- Rapid (< 2 hrs)</li>
- Portable
- Easy to use

- Running costs
  - Infrastructure needs
  - R resistance ≠ MDR-TB
  - No use for treatment monitoring





## DST coverage and enrolment on MDR-TB treatment compared to Global Plan



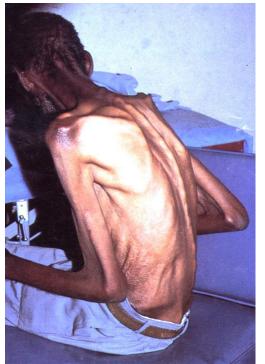

Coverage among new cases and enrollment on MDR-TB treatment compared with the targets in the Global Plan to Stop TB, 2011-2015

Lines indicate the planned targets, blue squares show the situation in 2009-2011 and green circles the projected enrolments 2012-2015



## **Enrolment on MDR-TB treatment, 2011**






## Scaling up quality management of MDR-TB

- Only if all pieces fit together -







Diagnostics Drugs Patient care