Non-rifampin rifamycins in TB/HIV

Richard E. Chaisson, MD Johns Hopkins University Center for TB Research Consortium to Respond Effectively to the AIDS-TB Epidemic

Rifamycins for TB

- Inhibit bacterial DNA-dependent RNA polymerase
- Key "sterilizing" drug in TB treatment basis of short-course therapy
- Three products available
 - Rifampin
 - Rifapentine
 - Rifabutin

Selected Pharmacokinetic Properties of Rifamycins

<u>Property</u>	<u>Rifampin</u>	<u>Rifabutin</u>	<u>Rifapentine</u>
Half life (T1/2), h	2-5	33-67	13-17
Cmax (mcg/L)	10.0	0.45	15.0
MIC (mcg/L)	0.15	0.06	0.05
Cytochrome P450 induction	+++ +	++	+++
Effect of cytochrome P450 inhibition	-	++++	-
Effect of food	↓ AUC	_	Î AUC

Adapted from: Burman et al., Clin Pharmacokin, 2001;40:327-341

Important Drug Interactions with Rifampin*

Protease inhibitors

- RIF decreases levels >80%, except some RTVboosted regimens
- Increased hepatotoxicity with LPV/r and SQV/r

NNRTIs

- RIF decreases NVP 40-50%, EFV 20-35%, ETV "significantly"
- CCR5 Inhibitors
 - RIF reduces maraviroc by 63%
- Integrase inhibitors
 - RIF reduces raltegravir by 40-60%

*similar effects likely with rifapentine

Important Drug Interactions with Rifabutin

Protease inhibitors

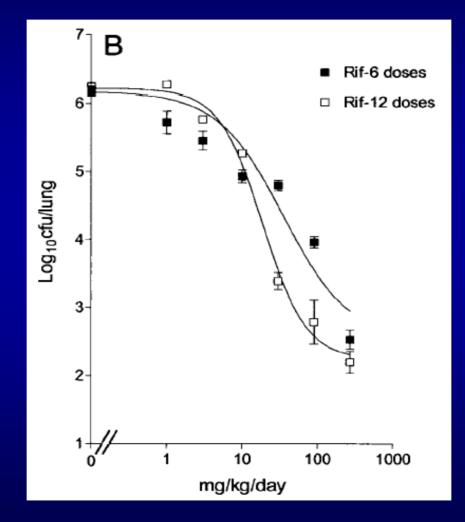
- Rifabutin decreases levels >20-30%
- RTV and azoles increase RBT levels significantly, causing uveitis and other toxicities – dose reduction necessary
- NNRTIs
 - Rifabutin has minor effect on NVP and EFV
 - EFV increases RBT clearance dose escalation necessary
- CCR5 Inhibitors no information
- Integrase inhibitors no information

Potential Role of Rifabutin and Rifapentine in HIV-related Tuberculosis

Rifabutin

 Permit treatment of TB in HIV-infected patients on boosted PI regimens

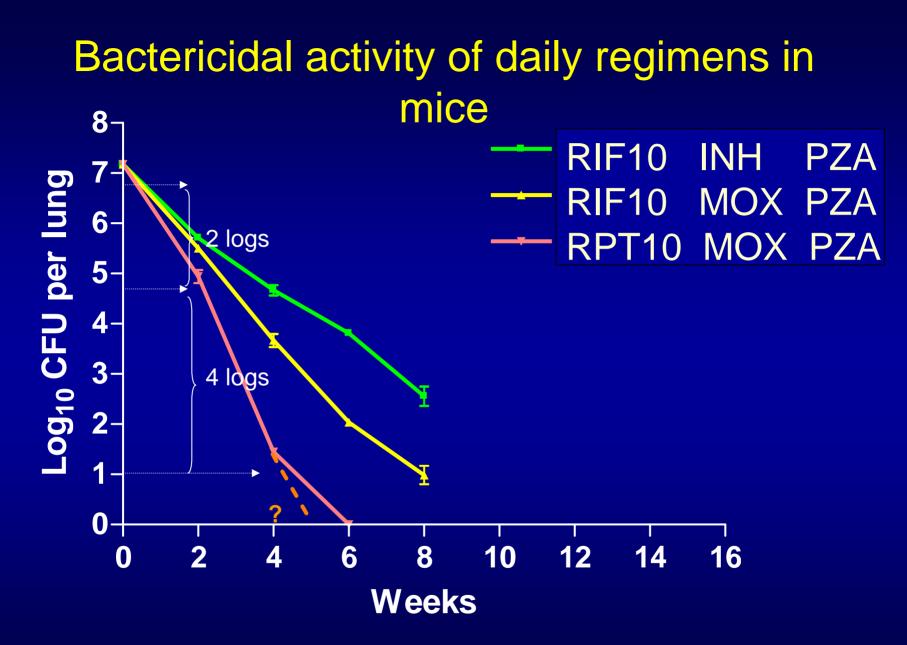
Rifapentine


 Shortening course of TB treatment in HIV+ and HIV- individuals

 Short-course preventive therapy for HIVinfected people with latent TB Rifabutin for treating HIV-related TB TBTC Study 23

- Twice weekly RBT/INH for HIV/TB
- High efficacy for TB
- 5/156 HIV+ patients had relapse/failure with acquired rifampin resistance
- All CD4 <60
- CDC recommendation do not use highly intermittent treatment for HIV+ patients with CD4 <100

MMWR 2002;51:214-5


Increasing regimen potency by increasing rifamycin exposure in a mouse model

Jayaram et al Antimicrob Agents Chemother 2003;47:2118

Optimizing rifamycin exposure by using rifapentine

- Half-life 14-17 hours (rifampin 2-5 hours)
- MIC 0.05 mcg/ml (rifampin 0.15 mcg/ml)
- Less potent inducer of cytochrome P450 than rifampin
- FDA-approved for TB treatment at dose of 600 mg (10 mg/kg) given twice weekly

Rosenthal et al., PLoS Medicine 2007

Rifapentine Rx studies in humans

2008			2009		2010			2011				1 2	1 3	1 4							
		Со	mp	lete	dev	/elo	pme	ent f	for r	egi	stra	tion	of a	a sh	ort	regi	mer	٦			
	M PK IU/NI																				
				ΡK	D1	4– s	-	ing · y; 3()													
				Ra	: P + Iteg (CI	ravi	r														
				: P10HZE (5/7) ef DC TBTC Study 2				-		су	@ 8	we	eks	5	•						
					P2: P10HZE – P7.5HZE (7/7) efficacy at 8 weeks (JHU/FDA)																
				eff	ica		@ 8	(7/7 we	-												

Adapted from D. Leboulleux, Sanofi-aventis

Novel TB Preventive Regimens in HIV-Infected Adults in Soweto: Preliminary Results

Neil Martinson, Grace Barnes, Reginah Msandiwa, Lawrence Moulton, Glenda Gray, James McIntyre, Harry Hausler, Malathi Ram, Richard E. Chaisson

Perinatal HIV Research Unit Johns Hopkins University Center for TB Research

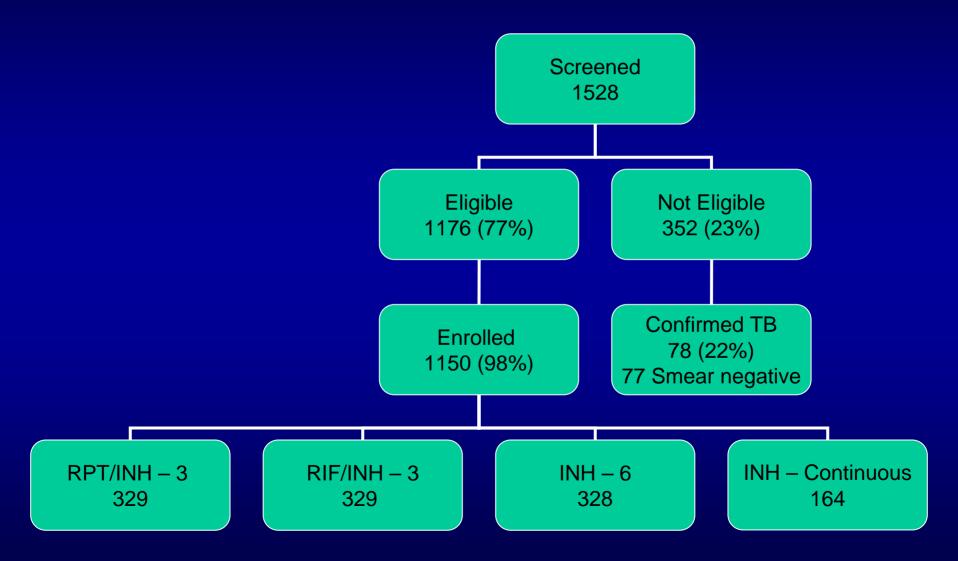
Funded by NIAID R01 AI48526 and USAID

Methods

- Open label, randomized trial Soweto, South Africa
- Eligibility:
 - HIV+
 - TST+ (>=5mm)
 - adults (>=18 yrs)
 - not eligible for HAART
 - No evidence of liver disease
 - No active TB
- Active TB: CXR, symptom screen and AFB smear and TB culture.
- Endpoint TB-free survival

Novel Regimens for TB Preventive Therapy Short-course

- Rifapentine 900mg + INH 900mg weekly 12 doses
 effective in animal model, convenient for patients
- Rifampin 600 mg + INH 600mg twice weekly 24 doses
 effective in one trial, widely available


Long

• INH 300mg daily continuously – may be effective to prevent re-infection

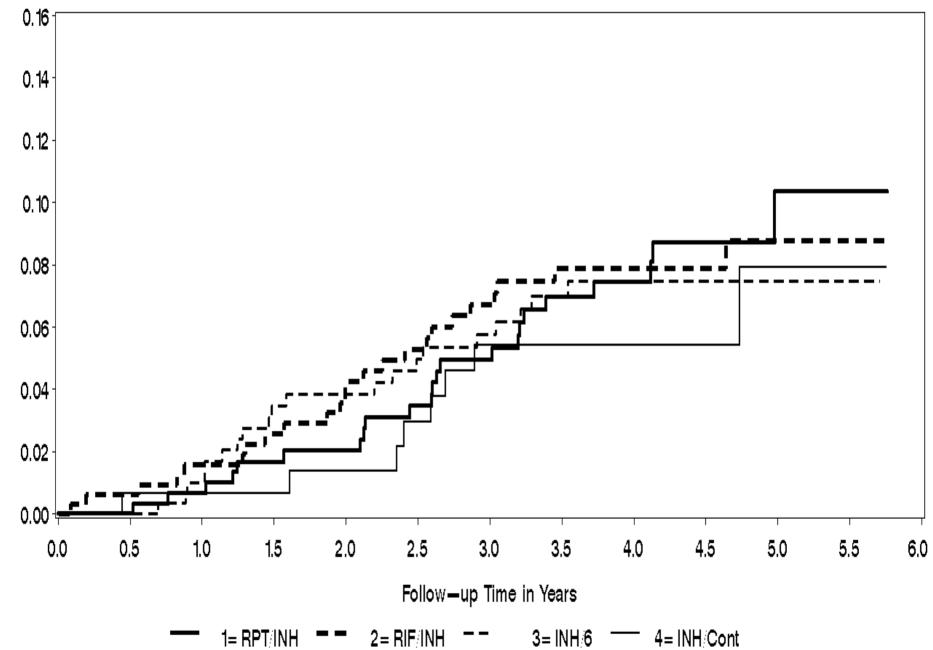
Standard of care

• INH 300mg daily for 6 months

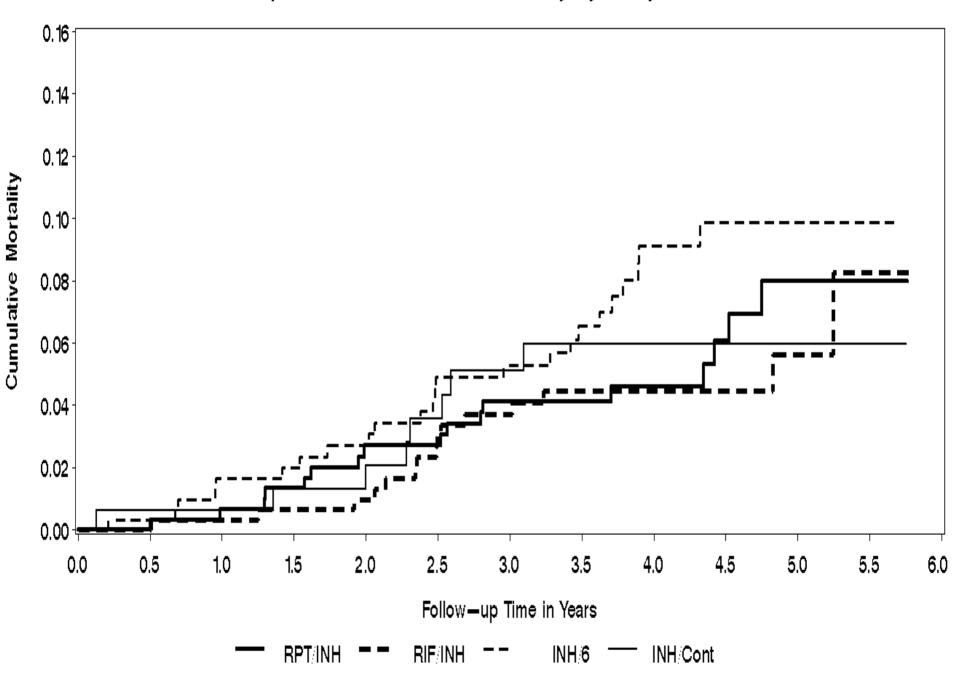
Study Flow and Recruitment

Baseline Characteristics

	RPT/INH (%)	RIF/INH (%)	INH -6 (%)	INH - Cont (%)	All (%)
Median Age	30	30	30	30	30
% Women	85.5	81.2	83.2	84.8	83.2
Education					
Grade 6-11	66.3	64.1	57.0	61.0	62.3
Grade 12	26.4	29.8	34.5	34.1	30.8
Diploma	1.8	1.2	1.5	3.1	1.7
Employment					
Employed	12.2	10.3	11.9	7.3	10.9
PPD (mm)					
Mean Range	15.5 6 – 45	15.8 6 - 34	15.6 6 – 50	16.1 5 – 33	15.7 5 – 50


Baseline Characteristics - cont

Characteristic	RPT/INH	RIF/INH	INH-6	INH- Cont	Overall
Weight (kg)					
Mean Weight	66.9	67.1	67.3	68.4	67.3
CD4 count (cells/mm ³)					
Median Range	471 208 – 1521	498 202 – 1635	492 204 - 1720	476 202 - 1460	485 202 - 1720
HIV Viral Load (copies/ml)					
Median	18,400	10,800	15,900	16,200	15,200


Primary Outcomes by Study Arm

Outcome	RPT/INH-3 (N=329)	RIF/INH-3 (N=329)	INH-cont (N=164)	INH-6 (N=328)
Median F/U (yrs)	3.98	3.99	3.81	3.78
TB Cases	23	24	8	20
TB incidence (per 100 PY)	1.94	1.97	1.43	1.77
TB incidence Rate ratio	1.10	1.11	0.81	1 (ref)
TB or death	3.03	2.87	2.67	3.53
TB or death Rate ratio	0.86	0.81	0.76	1 (ref)

Kaplan-Meier Curves of TB Incidence by Study Arm

Kaplan-Meier Curves for Mortality by Study Arm

Resistance Testing of Isolates

	Resistance		Resistant to						
Arm	Testing (N)	MDR (N)	INH (N)	R (N)	Strept. (N)	E (N)			
RPT/INH-3	19	2	2	3	1	1			
RIF/INH-3	16	0	0	0	0	0			
INH-6	14	0	0	0	0	0			
INH/Cont	7	1	1	1	1	0			
Total	56	3	2	3	2	1			

Serious Adverse Events by Study Arm

		Total			
	RPT/INH	RIF/INH	INH-6	INH-Cont	N (Rate)
	N (Rate*)	N (Rate)	N (Rate)	N (Rate)	
Hospitalization	95 (29.0)	89 (27.1)	104 (31.8)	38 (23.2)	326 (28.4)
Pregnancy	81 (24.7)	74 (22.5)	49 (15.0)	31 (18.9)	235 (20.5)
Grade 3 Toxicity	17 (5.2)	15 (4.6)	17 (5.2)	35 (21.3)	105 (9.1)
Grade 4 Toxicity	4 (1.2)	9 (2.7)	14 (4.3)	18 (11.0)	45 (3.9)
All Adverse Events	250 (76.2)	244 (74.2)	241 (73.7)	150 (91.5)	885 (77.1)

Rate= per 100 enrolled persons

Conclusions

- RPT/INH-3, RIF/INH-3 and H-cont are not superior to INH-6, but may be as efficacious.
- INH-cont had the lowest TB rate but significantly higher adverse event rate
- All 3 experimental regimens had lower risks of TB/Mortality, but not significantly so

Conclusions

- The shorter two novel regimens may be useful to improve adherence to TB preventive therapy in HIV-infected adults in sub-Saharan Africa.
- We cannot make recommendations about the use of continuous isoniazid preventive treatment.

Rifamycins for TB Summary

- Rifamycins essential for TB therapy
- Rifampin is safe and effective for HIV/TB patients on efavirenz
- Rifabutin allows use of boosted PI regimens to treat HIV in patients on TB therapy
- Rifapentine has the potential to shorten TB therapy significantly
- Rifapentine is a promising agent for shortcourse TB preventive therapy